• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 104
  • 49
  • 17
  • 15
  • 13
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 411
  • 100
  • 73
  • 61
  • 56
  • 54
  • 54
  • 48
  • 44
  • 36
  • 30
  • 26
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

ELECTRON PARAMAGNETIC RESONANCE (EPR) SPECTROSCOPIC INVESTIGATION OF DEFECT CENTERS IN SELECTED BORATES AND BOROSILICATES

2012 November 1900 (has links)
This thesis presents the results of a single-crystal electron paramagnetic resonance (EPR) spectroscopic investigation of defect centers in selected borates and borosilicates (i.e., datolite, danburite, and jeremejevite). The research brings new complementary data to the current understanding of defect structures in minerals, which are not only important to Earth Sciences but also directly relevant to environmental applications (e.g., nuclear waste disposal) and materials science. Single-crystal EPR spectra of a gamma-ray-irradiated datolite from Bergen Hill, New Jersey, USA, reveal the presence of a boron-oxygen hole center (BOHC). Spin-Hamiltonian parameters obtained from single-crystal EPR spectra and radiation-dose-dependence experiments allow us to confirm the BOHC center in datolite as the [BO4]0 type, involving hole trapping on the hydroxyl oxygen atom after the removal of the hydrogen atom: via a reaction O3BOH --> O3BO• + H0, where • denotes the unpaired electron. Density functional theory (DFT) calculations support the proposed structural model, and the calculated 11B hyperfine coupling constants are in excellent agreement with the experimental results. Also, isochronal and isothermal annealing experiments provide information about the thermal stability and decay kinetics of the [BO4]0 center in datolite. The confirmation of the [BO4]0 center and its formation from the O3BOH precursor in datolite are compared with other BOHCs in minerals and are discussed with relevance to the implications for not only understanding of BOHCs in alkali borosilicate glasses but also their applications to nuclear waste disposal. A combined study by use of synchrotron X-ray absorption spectroscopy (XAS), single-crystal EPR and pulse electron spin echo envelope modulation (ESEEM) spectroscopy provides compelling evidence for lattice-bound arsenic in danburite from Charcas, San Luis Potosi, Mexico. Arsenic K-edge X-ray absorption near-edge (XANES) spectra show that the dominant oxidation state is +3, and modeling of the extended X-ray absorption fine structure (EXAFS) spectra suggests that As3+ mainly occupies the Si site. Detailed single-crystal EPR spectra, measured before and after gamma-ray irradiation, reveal three arsenic-associated paramagnetic electron centers (I, II and III). Centers I and II are varieties of the [AsO2]2 radicals, formed from electron trapping on a substitutional As3+ ion at the Si site. This model is also supported by the 11B superhyperfine structures determined by ESEEM spectra at 80 K. Center III is the [AsO3]2 radical, originated from electron trapping on a [AsO4]3¬ group after removal of the O4 atom during gamma-ray irradiation. Therefore, arsenic in danburite is present in both the +3 and +5 oxidation states and preferentially occupies the Si site. Single-crystal EPR spectra of jeremejevite from Cape Cross, Namibia, reveal an S = 1/2 hole center characterized by a hyperfine structure arising from interaction with two equivalent 27Al nuclei. Our results suggest that this aluminum-associated oxygen hole center represents hole trapping on a hydroxyl oxygen atom linked to two equivalent octahedral Al3+ ions, after the removal of the proton (i.e., a VIAl−O−−VIAl center). Periodic ab initio UHF and DFT calculations confirmed the experimental 27Al hyperfine coupling constants and directions, supporting the proposed structural model. Also, isochronal annealing experiments provide information about the thermal stability of the VIAl−O−−VIAl center. These data obtained from the VIAl−O−−VIAl center in jeremejevite provide new insights into analogous defects that have been documented in several other minerals.
82

Iron oxide nanoparticles as a contrast agent for thermoacoustic tomography

Keho, Aaron Lopez 02 June 2009 (has links)
An exogenous contrast agent has been developed to enhance the contrast achievable in Thermoacoustic Tomography (TAT). TAT utilizes the penetration depth of microwave energy while producing high resolution images through acoustic waves. A sample irradiated by a microwave source expands due to thermoelastic expansion. The acoustic wave created by this expansion is recorded by an ultrasonic transducer. The water content in biological samples poses an obstacle, as it is the primary absorber of microwave radiation. The addition of an exogenous contrast agent improves image quality by more effectively converting microwave energy to heat. The use of iron oxide nanoparticles in MRI applications has been explored but super paramagnetic iron oxide nanoparticles (SPION) have benefits in microwave applications, as well. Through ferromagnetic resonance, SPION samples more effectively convert microwave energy into heat. This transduction to heat creates significantly larger thermoacoustic waves than water, alone. Characterization of the SPION samples is executed through TAT, TEM, XPS, EDS, and a vector network analyzer with a dielectric probe kit. Onedimensional and phantom model imaging with an iron oxide nanoparticle contrast agent provide a two-fold improvement in contrast at current system configurations. Further enhancement is possible through adjustments to the nanoparticles and TAT system.
83

Investigation of the mechanism of phosphotriesterase: characterization of the binuclear metal active site by electron paramagnetic resonance spectroscopy

Samples, Cynthia Renee 15 May 2009 (has links)
Phosphotriesterase (PTE) from Pseudomonas diminuta is a zinc metalloenzyme found in soil bacteria capable of organophosphate hydrolysis at rates approaching the diffusion controlled limit. Interest in PTE for degradation of chemical warfare agents and disposal of pesticides supports the need to understand the mechanism by which it performs hydrolysis. For further mechanistic clarity, this work will provide direct confirmation of the solvent bridge identity and the protonated species resulting in loss of catalytic identity. Inhibitor and product binding to the metal center will also be addressed; as well as the evaluation of the catalytic activity of Fe(II)-substituted PTE. This work has determined that the Mn/Mn-PTE electron paramagnetic resonance (EPR) spectrum exhibits exchange coupling that is facilitated through a hydroxide bridge. Protonation of the bridging hydroxide results in the loss of the exchange coupling between the two divalent cations and the loss of catalytic activity. The reversible protonation of the bridging hydroxide has an apparent pKa of 7.3 based upon changes in the EPR spectrum of Mn/Mn-PTE with alterations in pH. The pH-rate profile for the hydrolysis of paraoxon by Mn/Mn-PTE shows the requirement of a single function group that must be unprotonated with a pKa of 7.1. The comparable pKa values are proposed to result from the protonation of the same ionizable species. The effects of inhibitor and product binding on the magnetic properties of the metal center and the hydroxyl bridge are investigated by accessing new EPR spectral features. This work concludes that the binding of inhibitor occurs at the metal center and results in an increase of non-bridged hydroxyl species. These results, in conjunction with kinetic and crystallographic data, suggest that substrate binding via the phosphoryl oxygen at the ?-metal weakens the hydroxyl bridge coordination to the ?-metal. This loss of coordination would increase the nucleophilic character of the bridge, and binding of the substrate to the metal center would result in a stronger nucleophile for hydrolysis. Lastly, Fe(II) binding and activation of apoenzyme is evaluated under anaerobic conditions. This work concludes Fe/Fe-PTE is not catalytically active, but can bind up to 2 equivalent Fe(II) ions per active site.
84

Investigation of the Kinetics and Mechanism of RAFT Polymerization via EPR Spectroscopy

Meiser, Wibke 04 July 2012 (has links)
No description available.
85

Existência de diferentes estados de spin dos íons Fe2+ e Fe3+ do citocromo c resultante da interação com lipossomos modelos. / Existence of different heme iron Fe2+ and Fe3+ spin states cytochrome c ions results the interaction with lipid bilayers.

Maria do Rosário Zucchi 04 May 2001 (has links)
A associação lipídio/citocromo c é importante e deve ser estudada, pois repercute na atividade peroxidática da proteína abordada e pode contribuir para o processo apoptótico, ou morte programada da célula, e também desempenha um papel significativo na cadeia respiratória. A natureza e a especificidade da interação do citocromo c com bicamadas lipídicas têm sido bastante investigadas ultimamente, mas informações detalhadas e precisas sobre tais assuntos ainda não existem. É aceito que ocorre primeiramente uma interação eletrostática entre a proteína citocromo c e as membranas fosfolipídicas. Em seguida, há uma interação hidrofóbica. Entretanto, ainda não é bem compreendido o papel da cadeia fosfolipídica. A associação do citocromo c com membranas lipídicas induz mudanças no estado de spin do átomo de ferro. A interação entre as vesículas carregadas e o citocromo c induz mudanças estruturais na proteína, as quais são refletidas no seu centro ativo, ou grupo heme. As mudanças do campo cristalino no sítio do ferro hemínico de forte para fraco são acompanhadas por mudanças do estado de spin de baixo para alto, respectivamente. Neste trabalho, estuda-se sistematicamente a natureza da interação entre o citocromo c e a cadeia fosfolipídica. As mudanças estruturais no grupo heme foram correlacionadas com a natureza do lipídio, ou seja, com a carga da cabeça e com o tamanho e o tipo da cadeia fosfolipídica. Foram utilizados treze lipídios diferentes, naturais e sintetizados, com cabeças polares negativas e neutras e com cadeias carbônicas saturadas e insaturadas de diferentes comprimentos. Para tal investigação, utilizamos as técnicas: Ressonância Paramagnética Eletrônica (RPE) Onda Contínua (CW) e Pulsada (PW) e Dicroísmo Circular Magnético (MCD). As técnicas enunciadas avaliam as mudanças de estado de spin e a simetria do citocromo c nos seus estados férrico e ferroso. A interação lipoprotéica lipídio/citocromo c foi avaliada com lipídios diferentes, inclusive com o lipossomo PCPECL, que mimetiza a membrana interna da mitocôndria nos eucariontes. A partir dos resultados experimentais, sugerimos um modelo para esse tipo de associação. / This association lipid/cytochrome c is interesting to study in order to understand the peroxidase activity of this protein, that plays an important role in the respiratory chain and in the apoptosis process or the programmed cell death. The nature and specificity of the interaction of cytochrome c with lipid bilayers have been major goals in recent studies, but detailed information on that issue is not yet widely available. In this regard, it is generally accepted that the electrostatic interaction is an important factor in the association of cytochrome c with phospholipid membranes, followed by a hydrophobic interaction. However, the role played by the phospholipid chain is not well understood. The association of cytochrome c with negative membranes induces a change in the heme iron spin state. The interaction between the charged vesicles and cytochrome c leads to structural changes in the active central or heme group. The changing of the crystalline field of the heme iron from strong to weak is accompanied by spin states changes from low to high spin, respectively. These facts concerned us to investigate more systematically the nature of the interaction between cytochrome c and the phospholipid chains. The lipid-induced effects in the heme iron crystalline field are correlated to the nature of the charged head group and to the size and type of the phospholipid chain. Thirteen different lipids, nature and synthetic, were used, with negative and neutra1 polar head group and saturated and unsaturated acyl chains with different length. This work investigates the change of heme iron spin state and symmetry of ferric cytochrome c using Continuous Wave (CW) and pulsed (PW) Electron Paramagnetic Resonance (EPR) and Magnetic Circular Dichroism (MCD) techniques. These techniques analyze the spin state change and the symmetry of the iron cytochrome c in its ferric and ferrous states. The effect of the different lipids were analyzed, including PCPECL membrane that mimetics the inner mitocondrial membrane in eukaryotes.
86

Estrutura molecular e espectros de EPR do composto monocristalino CuBr2(fdmp)2. / Molecular structure and EPR spectra of the monocrystalline compound CuBr2(fdmp)2.

Claudia Elisabeth Munte 19 July 1995 (has links)
Estão sendo apresentados, neste trabalho, estudos estruturais e magnéticos do composto de [CuBr2(fdmp)2] utilizando as técnicas de difração de Raio-X e espectroscopia de EPR. a complexo cristaliza no grupo espacial P21/n com a=8.1653(47)&#197, b=10.432(3)&#197, c=13.385(4)&#197, &#946=100.12(4)&#176 e Z=2. Os íons de Cu(II), que estão em coordenação quadrado-planar trans ligando-se a dois Nitrogênios e dois Bromos, se encontram em centros de inversão. Somente urna linha de EPR e observada, proveniente do colapso das ressonâncias relativas aos dois íons de Cu(II) magneticamente não equivalentes, causado pela interação de troca. Devido a diferença significativa entre os pesos atômicos do Nitrogênio e Bromo, não e esperada urna simetria axial para o tensor g como é comum ocorrer em vários complexos de Cu(II); de fato, a decomposição de g cristalino para os dois g moleculares revela três autovalores distintos. Alem disso, a direção de maior g não coincide exatamente com a normal ao quadrado-planar, como é comum nesses complexos: se encontra rodada de &#8764 5&#176 em direção ao Bromo, caracterizando um estado fundamental do tipo dx2-y2 com mistura de dyz. Outro fato incomum verificado foi a dependência do fator g com a freqüência e a presença de contribuições não-seculares, característicos de sistemas em que a freqüência de troca é próxima a freqüência de Larmor. Uma analise da variação angular da largura de linha de ressonância foi utilizada para a determinação do parâmetro de troca &#8204J&#8204. Está também incluído, neste trabalho, um método numérico de decomposição de g cristalino em g moleculares e sua comparação com métodos da literatura. / In the present work, we discuss the structural and magnetic properties of the [CuBr2(fdmp)2] compound deduced from studies of X-ray diffraction and EPR spectroscopy. This complex crystallizes in the spatial group P21/n with a=8.1653(47)&#197, b=10.432(3)&#197, c=13.385(4)&#197, &#946=100.12(4)&#176 and Z=2. The copper ions, Cu (II), are in a square-planar coordination bound to two nitrogen and two bromine atoms. They are localized in inversion centers. Only one EPR line has been observed due to the collapse of the resonances of the two magnetically inequivalent Cu (II) ions caused by a strong exchange interaction between them. Since nitrogen and bromine have significantly different atomic weights we may not expect an axially symmetric g-tensor as is commonly found in many Cu (II) complexes. In fact, the decomposition of the experimental crystalline g-tensor into two molecular tensors reveals three distinct eigen-values. Furthermore, the axis of the largest molecular eigen-value does not exactly coincide with the normal of the square plane: it is rotated by &#8764 5&#176 toward the bromine atom which characterizes a dx2-y2 ground state with some contribution from a dyz state. Another unusual fact that has been revealed in our studies is the frequency dependence of the g-factor, due to the presence of non-secular contributions to Hamiltonian, which are characteristic for systems with a exchange frequency near the Larmor frequency. In order to determine the exchange factor &#8204J&#8204, we analyzed the angular dependence of the line broadening. In the present work we also included a numerical method for the decomposition of the crystalline g-tensor into molecular ones and compared it with other methods found in the literature.
87

Estudo de compósitos poliméricos e vidros fluoroindatos por ressonância magnética. / Magnetic resonance study of polymeric composites and fluoroindate glasses.

Roberto Weider de Assis Franco 24 September 1999 (has links)
Foram estudados compósitos poluméricos e vidros fluoroindatos utilizando as espectroscopias de Ressonância Magnética Nuclear (RMN) pulsada e Ressonância Paramagnética Eletrônica (RPE). O estudo de RMN do 1H nos compósitos baseado no polímero polióxido de etileno e partículas de carbono permitiu diferenciar as mobilidades das cadeias poluméricas e identificar as contribuições destas fases. A partir das medidas de RPE foi possível sugerir uma interpretação das interações entre as partículas de carbono nos compósitos. Nos vidros fluoroindatos foi estudado o processo de cristalização, sendo acompanhada sua influência na relaxação nuclear do 19F. A cristalização foi observada por RPE nos vidros dopados com Cu2+, Mn2+ e Gd3+, sendo verificadas as alterações locais causadas por este processo. / Polymeric composites and fluoroindate glasses were studied using pulsed Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies. Study of the composite formed by the polymer poly-ethylene oxide and carbon particles allowed us to distinguish the mobilities of polimeric chains and to identify the contributions from different phases. From EPR measurements it was possible to suggest an interpretation of the interactions between carbon particles in the composites. The main objective in the fluoroindate glasses study was to follow the crystallzation process. The 19F NMR measurements allowed to the observation of the influence of this process in the nuclear relaxation. The crystallization was also tracked by EPR spectroscopy in the doped glasses with the paramagnetic ions Cu2+, Mn2+ and Gd3+. This was accomplished by observing the local alterations caused by that process.
88

Simulação computacional de espectros de Ressonância Paramagnética Eletrônica de onda contínua. / Computational simulation of continuous wave paramagnetic resonance spectra.

José Fernando de Lima 25 May 2001 (has links)
Neste trabalho foi desenvolvido um programa para simular espectros de ressonância paramagnética eletrônica (RPE) de onda contínua de amostras policristalinas para tensores não coincidentes. O Hamiltoniano de spin utilizado inclui os tensores anisotrópicos g, interação hiperfina, divisão de campo zero e quadrupolar e o termo Zeeman nuclear isotrópico. O programa inclui várias tecnologias novas, tais como: segmentação de campo com teoria de perturbação de autocampo para localizar as posições de campo ressonante, os métodos de distribuição Espiral e Repulsão para determinar o conjunto de orientações e a interpolação bidimensional triangular para reduzir o número de orientações computadas. A conjunção desses algoritmos podem aumentar a velocidade e a precisão das simulações, especialmente na simulação de espectros de sistemas de spin de dimensões grandes. O programa foi testado em algumas situações reais e o resultado obtido pode ser considerado, em alguns casos, equivalente aos programas comerciais e, em outros casos, de qualidade superior. / A computer program to simulate continuous wave electron paramagnetic resonance (EPR) powder spectra for noncoincident tensors has been developed. The spin Hamiltonian used includes anisotropic g, hyperfine interaction, zero field splitting and quadrupolar tensors and isotropic nuclear Zeeman term. The program includes a number of new technologies such as: field positions, spiral and repulsion methods for determining a set of orientations and triangular bidimensional interpolation to reduce the number of computed orientations. The conjunction of these algorithms can greatly increase the speed and the accuracy of simulations; especially in simulating powder spectra of spin systems of large dimensions. The program has been tested in some real situations and the obtained result can be considered, in some cases, equivalent to that of commercial software, in other cases, of superior quality.
89

Cluster-based redox activity in Endohedral Metallofullerenes:

Samoylova, Nataliya 07 November 2017 (has links) (PDF)
Endohedral fullerenes are closed carbon shells encapsulating molecular or ionic species in their inner space. Obtained for the first time in 1985, endohedral metallofullerenes (EMFs) remain in focus of research for many years with a broad variety of metal atoms, endohedral cluster and cage sizes being reported. Electrochemical studies of endohedral metallofullerenes are of particular interest because of the more complex redox behavior in comparison to empty fullerenes. The EMF molecules can be considered as a combinations of positively charged cluster and negatively charged carbon shell “ligand”, and both constituents can be redox active. A cage-based electrochemical activity is more common, in particular, the most abundant nitride clusterfullerenes generally have redox-active cages. Cluster-based electrochemical activity is less common and can be revealed via unexpected redox behavior (e.g., shifted potential when compared to analogous molecules, potential metal dependence) and with the use of spectroscopic methods. Here we report electrochemical and EPR studies of three EMF families: (i) M2@C82-C3v and M2@C82-Cs dimetallofullerenes with a covalent bonding between two metal atoms, (ii) M2@C80(CH2Ph) dimetallofullerene derivatives with single-occupied metal-bonding orbital, and (iii) M2TiC@C80 EMFs with endohedral Ti(IV) (M is either Sc or Y or a lanthanide). For the first two families, the metal-metal bonding orbital has been found to be redox active: in M2@C82, the double-occupied M-M bonding orbital is involved in the first oxidation process, while in M2@C80(CH2Ph) the unoccupied component of single-occupied metal-bonding orbital acts as the LUMO, accepting one electron during the first reduction step. Thus, single electron transfer reactions in both cases lead to the changes in the magnetic properties of EMFs, which is especially well revealed by EPR spectroscopy. For the series of M2TiC@C80 EMFs, the first reduction predominantly occurs on internal Ti atom and can be described as TiIV/TiIII redox process. Due to the variation of the size of the Ti ion in different oxidation states, reduction changes the inner strain of the cluster, leading to a large variability of the TiIV/TiIII reduction potential in dependence on the size of the formally inert lanthanide metal in M2TiC@C80.
90

Magnetic properties of heterometallic ruthenium-based clusters

Magee, Samantha January 2014 (has links)
This thesis describes the synthesis of ruthenium based molecular clusters and their characterisation. Chapter 2 introduces the concept that the very large zero-field splitting (D = 2.9 cm–1) in the S = 5/2 ground state of [Ru2Mn(μ3-O)(tBuCO2)6(py)3] can be modelled by antisymmetric exchange effects. This is supported by measurement of the single ion D values from the Fe2Mn analogue. The same model is applied to the Ru2Ni analogue to describe the zero-field splitting in the S = 1 ground state, (DGS = +8.0 cm–1 from DNi = -4.0 cm–1) in Chapter 3.Chapters 3 and 4 give the full characterisation of each of the two families, [MIII2MII(μ3-O)(tBuCO2)6(py)3] (MIII = Ru or Fe, MII = Mn, Co, Ni or Zn), through IR, electronic absorption and NMR spectroscopy and are structurally characterised by X-ray diffraction. The total spin ground states and zero-field splitting of those ground states have been ascertained by SQUID magnetometry and EPR spectroscopy. Due to the redox activity of the Ru2M complexes chemical oxidations led to the isolation of [RuIII2CoIIIO(tBuCO2)6(py)3]+ (5) and [RuIIIRuIVNiIIO(tBuCO2)6(py)3]+ (6); the locus of their oxidation was determined with the aid of X-ray absorption spectroscopy (XAS).Chapter 5 shows that due to the ease of the substitution of the terminal ligand in Ru2M they can be linked to other molecular clusters with N-donor ligands, in this case [Cr7NiF8(tBuCO2)15(O2CC5H4N)][NH2Pr2] in order to synthesise [Ru2NiO(tBuCO2)6(py)(Cr7NiF8(tBuCO2)15(O2CC5H4N))2][NH2Pr2]2. In situ oxidation experiments have also been carried out to assess the switchabilty of the redox active linker. Chapter 6 demonstrates a new structural archetype for tetranuclear ruthenium mixed-metal complexes, with the formula, [Ru2M2(µ3-OH)2(tBuCO2)7(py)4], where M is either Co (1) or Ni (2). SQUID magnetometry and EPR spectroscopy have determined the spin ground states as, Seff = 1/2 in 1 and S = 3/2 in 2. The magnetic anisotropy in 2 has been determined as +2.02 cm–1 for the S = 3/2 ground state.

Page generated in 0.0319 seconds