781 |
The Value of Assessing Uncertainty in Oil and Gas Portfolio OptimizationHdadou, Houda 16 December 2013 (has links)
It has been shown in the literature that the oil and gas industry deals with a substantial number of biases that impact project evaluation and portfolio performance. Previous studies concluded that properly estimating uncertainties will significantly impact the success of risk takers and their profits. Although a considerable number of publications investigated the impact of cognitive biases, few of these publications tackled the problem from a quantitative point of view.
The objective of this work is to demonstrate the value of quantifying uncertainty and evaluate its impact on the optimization of oil and gas portfolios, taking into consideration the risk of each project. A model has been developed to perform portfolio optimization using Markowitz theory. In this study, portfolio optimization has been performed in the presence of different levels of overconfidence and directional bias to determine the impact of these biases on portfolio performance.
The results show that disappointment in performance occurs not only because the realized portfolio net present value (NPV) is lower than estimated, but also because the realized portfolio risk is higher than estimated. This disappointment is due to both incorrect estimation of value and risk (estimation error) and incorrect project selection (decision error). The results of the cases analyzed show that, in a high-risk-tolerance environment, moderate overconfidence and moderate optimism result in an expected decision error of about 19% and an expected disappointment of about 50% of the estimated portfolio. In a low-risk-tolerance environment, the same amounts of moderate overconfidence and optimism result in an expected decision error up to 103% and an expected disappointment up to 78% of the estimated portfolio. Reliably quantifying uncertainty has the value of reducing the expected disappointment and the expected decision error. This can be achieved by eliminating overconfidence in the process of project evaluation and portfolio optimization. Consequently, overall industry performance can be improved because accurate estimates enable identification of superior portfolios, with optimum reward and risk levels, and increase the probability of meeting expectations.
|
782 |
Multiple-input multiple-output wireless system designs with imperfect channel knowledgeDing, Minhua 25 July 2008 (has links)
Empowered by linear precoding and decoding, a spatially multiplexed
multiple-input multiple-output (MIMO) system becomes a convenient
framework to offer high data rate, diversity and interference
management. While most of the current precoding/decoding designs
have assumed perfect channel state information (CSI) at the
receiver, and sometimes even at the transmitter, in this thesis we
design the precoder and decoder with imperfect CSI at both the
transmit and the receive sides, and investigate the joint impact of
channel estimation errors and channel correlation on system
structure and performance. The mean-square error (MSE) related
performance metrics are used as the design criteria.
We begin with the minimum total MSE precoding/decoding design for a
single-user MIMO system assuming imperfect CSI at both ends. Here
the CSI includes the channel estimate and channel correlation
information. The structures of the optimum precoder and decoder are
determined. Compared to the perfect CSI case, linear filters are
added to the transceiver structure to improve system robustness
against imperfect CSI. The effects of channel estimation error and
channel correlation are quantified by simulations.
With imperfect CSI at both ends, the exact capacity expression for a
single-user MIMO channel is difficult to obtain. Instead, a tight
capacity lower-bound is used for system design. The optimum
structure of the transmit covariance matrix for the lower-bound has
not been found in the existing literature. By transforming the
transmitter design into a joint precoding/decoding design problem,
we derive the expression of the optimum transmit covariance matrix.
The close relationship between the maximum mutual information design
and the minimum total MSE design is also discovered assuming
imperfect CSI.
For robust multiuser MIMO communications, minimum average sum MSE
transceiver (precoder-decoder pairs) design problems are formulated
for both the uplink and the downlink, assuming imperfect channel
estimation and channel correlation at the base station (BS). We
propose improved iterative algorithms based on the associated
Karush-Kuhn-Tucker (KKT) conditions. Under the assumption of
imperfect CSI, an uplink--downlink duality in average sum MSE is
proved. As an alternative for the uplink optimization, a sequential
semidefinite programming (SDP) method is proposed. Simulation
results are provided to corroborate the analysis. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2008-07-25 10:53:45.175
|
783 |
OPTIMIZATION OF RATELESS CODED SYSTEMS FOR WIRELESS MULTIMEDIA MULTICASTCAO, YU 13 June 2011 (has links)
Rateless codes, also known as fountain codes, are a class of erasure error-control codes that are particularly well suited for broadcast/multicast systems. Raptor codes, as a particularly successful implementation of digital fountain codes, have been used as the application layer forward error correction (FEC) codes in the third generation partnership program (3GPP) Multimedia Broadcast and Multicast Services (MBMS) standard. However, the application of rateless codes to wireless multimedia broadcast/multicast communications has yet to overcome two major challenges: first, wireless multimedia communications usually has stringent delay requirements. In addition, multimedia multicast has to overcome heterogeneity. To meet these challenges, we propose a rateless code design that takes the layered nature of source traffic as well as the varying quality of transmission channels into account. A convex optimization framework for the application of unequal error protection (UEP) rateless codes to synchronous and asynchronous multimedia multicast to heterogeneous users is proposed.
A second thread of the thesis addresses the noisy, bursty and time- varying nature of
wireless communication channels that challenge the assumption of erasure channels often used for the wired internet. In order to meet this challenge, the optimal combination of application-layer rateless code and physical layer FEC code rates in time-varying fading channels is investigated. The performance of rateless codes in hybrid error-erasure channels with memory is then studied, and a cross-layer decoding method is proposed to improve decoding performance and complexity. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2011-06-12 16:26:36.136
|
784 |
Error control techniques for the compound charnel.Dmuchalsky, Theodore John. January 1971 (has links)
No description available.
|
785 |
Performance of digital communication systems in noise and intersymbol interferenceNguyen-Huu, Quynh January 1974 (has links)
No description available.
|
786 |
Adaptive error control through packet combining in code division multiple access systemsSouissi, Slim 08 1900 (has links)
No description available.
|
787 |
Adaptive error control over slowly varying channelsRice, Michael D. (Michael David) 05 1900 (has links)
No description available.
|
788 |
Soft decision decoders for mobile messaging systemsTapp, Thomas L. 08 1900 (has links)
No description available.
|
789 |
Trellis coded, adaptive rate hybrid-ARQ protocols over AWGN channels and slowly fading rician channelsRasmussen, Lars Kildehoj 08 1900 (has links)
No description available.
|
790 |
Trellis based soft output decoding algorithms for concatenated coding systemsPark, Jong Il 05 1900 (has links)
No description available.
|
Page generated in 0.0409 seconds