1 |
Methodologies for Obtaining Reliable Indicators for the Environmental Stress Cracking Resistance of PolyethyleneSardashti, Amirpouyan January 2014 (has links)
Environmental stress cracking (ESC) is one of the main, and probably the most common, failure mechanisms involved in polymer fractures. This type of failure is critically important as it occurs suddenly, without any visible pre-fracture deformation. Such failure can be catastrophic and costly in cases where structural integrity is required. In polyethylene (PE), ESC occurs through a slow crack growth mechanism. Cracks initiate from stress-concentrated imperfections, propagate through the bulk of PE, and ultimately result in a brittle fracture. In order to predict the environmental stress cracking resistance (ESCR) of PE, it is necessary to fully understand the molecular structure of the resin. In this thesis, attempts were made to find relationships between molecular structure characteristics and material responses, mainly inter-lamellar entanglements and strain hardening behaviour of PE resins, through mechanical and rheological experiments. Inter-lamellar entanglements are believed to be the main factor controlling slow crack growth of PE. Extent of entanglements and entanglement efficiency were investigated by monitoring the strain hardening behaviour of PE resins in the solid state through a uniaxial tensile test, and in the melt state, through extensional rheometry.
ESCR is usually assessed by unreliable and time consuming testing methods such as the notch constant load test (NCLT) on notched PE specimens in the presence of an aggressive fluid and elevated temperatures. In this thesis, a practical, yet reliable, tensile test was developed for the evaluation and prediction of ESCR. The developed test offers a more reliable and consistent ESCR picture without the drawbacks of the subjective notching process and presence of aggressive fluids. Through this test, a factor called ???corrected hardening stiffness (cHS)??? was developed, which can easily be used for a relative ranking of ESCR of different PE resins.
Studies were next extended to the melt state via shear and extensional rheometry. Through studies in the shear mode, a molecular weight-normalized average characteristic relaxation time (??N) was found to be efficient in predicting the extent of chain entanglements in resins. This provided a potential melt indicator for a relative measure of ESCR, for linear low density polyethylene (LLDPE), with different short chain branching levels. Extensional studies were conducted to evaluate the strain hardening behaviour in the melt state. An inverse correlation was obtained between ESCR and the melt strain hardening coefficient (MSHC), found from Sentmanat Extensional Rheometry (SER). This indicated an inverse relationship between ESCR and chain extensibility in the melt. In addition, a new factor called ???melt hardening stiffness (mHS)??? was developed from the slope of a stress-strain line, obtained from SER. This factor, analogous to cHS, can be used for a practical and reliable ranking of ESCR of PEs.
ESCR is usually associated with classical crystalline phase property indicators, such as crystallinity and lamella thickness. In this thesis, the effect of processing and post processing temperature on the extent of inter-lamellar entanglements were investigated, evaluated, and correlated to ESCR. Also, analysis of the lamella surface area (LSA) was pursued since LSA reflects changes in phase interconnectivity more precisely. The focus of this part of the study was on the effect of temperature on LSA to identify the optimum processing and post-processing conditions which yield a higher LSA. It was reasonable to presume that PE with larger lamella lateral surface areas will have more inter-lamellar entanglements, hence higher ESCR.
Finally, a well-controlled ultraviolet (UV) photoinitiated reactive extrusion (REX) process was developed for selective formation of long chain branches in the PE structure. This was conducted to impose restrictions against stretching of the polymer chain, which consequently enhanced ESCR.
|
2 |
Measuring advances on economic, social and cultural rights in the interamerican region / Medición de avances en materia de derechos económicos, sociales y culturales en la región interamericanaPérez Gómez, Laura Elisa 10 April 2018 (has links)
Progress indicators for measuring human rights, is a new paradigm established in the Inter-American region to identify improvements and formulate public policies based on empirical evidence. The analysis of the first round of reports for the Protocol of San Salvador was finished on May 2016, setting observations and recommendations to ensure expansion of economic, social, cultural and environmental rights in the Americas. This instrument with indicators must strengthen development policies and enforce human rights. / La evaluación de derechos humanos vía indicadores es un nuevo paradigma establecido en la región interamericana para valorar los progresos en la materia y formular políticas públicas basadas en evidencia empírica. El proceso de análisis de la primera ronda de informes para el Protocolo de San Salvador culminó en mayo de 2016, con la generación de observaciones y recomendaciones orientadas a garantizar la expansión de los derechos económicos, sociales, culturales y ambientales en las Américas. Esta metodología de indicadores deberá constituir un instrumento para fortalecer las políticas de desarrollo y la exigibilidad de los derechos humanos.
|
3 |
Investigating Alternative Testing Techniques for Evaluating the Environmental Stress Cracking Resistance of Polyethylenes in Contact with Ageing FluidsWest, William T.J. January 2017 (has links)
Environmental stress cracking (ESC) is a significant problem that has plagued the plastics industry since its discovery nearly 70 years ago. The accelerated brittle failure brought about when a stressed polymer comes in contact with an aggressive environment can happen suddenly with destructive results. Many classes of polymers are susceptible to this type of slow crack growth; however special emphasis has typically been placed on polyolefins due to their wide range of working environments, market dominance and their seemingly chemical resistance. Much research has been focused on formulating environmentally resistant materials, while the evaluation techniques for gauging environmental stress cracking resistance (ESCR) seem to have been left behind. This research focuses on developing a reliable testing technique for evaluating the ESCR of polyethylene resins.
Passive acoustic monitoring was adapted to an industrially accepted ESCR test in an attempt to hear polymer damage before it was visually apparent. It was discovered that the low energy released during the early stages of damage and excessive background noise masked passive signals, making this method of evaluation impractical. Alternatively, active ultrasonic monitoring through velocity and attenuation measurements was investigated to see if probing techniques could be used to detect structural damage. Active ultrasonic monitoring of static and tensile stressed samples were able to differentiate plasticization after ageing, however no indication of ESCR properties could be inferred.
A novel forced based monitoring system was developed in response to the acoustic testing techniques. Force monitoring was able to provide useful information regarding the failure cycle of ESC and the acquired profiles could describe a failure onset time. Several ageing environments were also tested with force monitoring and a traditional ESCR test to reveal the stress cracking ability of biodiesel, an important finding. / Thesis / Master of Applied Science (MASc) / Accelerated failure of stressed plastics can occur upon exposure to fluids through a phenomenon known as environmental stress cracking (ESC). The following research outlines the development of a novel testing technique to gauge a material’s environmental stress cracking resistance (ESCR). Adaption of passive acoustics to an existing stress cracking test was unable to provide any indication of ESCR, however the use of active ultrasonics was able to show sample plasticization. A novel forced based measuring technique was found to uniquely map the failure progression of a sample undergoing ESC, providing valuable information for understanding the phenomenon. Additional testing was also completed on various environmental fluids to reveal biodiesel’s ability to provoke ESC, an important observation.
|
4 |
The correlation of the molecular structure of polyolefins with environmental stress cracking resistanceShebani, Anour Nasser 12 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2006. / This study concerns the phenomenon of environmental stress cracking resistance (ESCR) in three impact polypropylene copolymers (IPPCs). The main purpose was to correlate the ESCR with their properties such as microstructure, molecular weight (MW), molecular weight distribution (MWD), crystallinity and morphology.
Initially the selection of a suitable test method and an active stress cracking agent (SCA) were the preliminary concerns. The Bell telephone test was used to evaluate SCAs, while a published procedure for determining ESCR of ethylene based plastics was adapted for the purpose of this study. Isopropanol was selected as SCA. Polymers were fully characterized by FTIR, 13C NMR, DSC and high temperature GPC. Optical microscopy was used to investigate craze formation and crack growth, and scanning electron microscopy (SEM) was used to study the morphology of the polymers.
Since IPPCs are known to have multi-fraction copolymeric structures and each of these fractions has significantly different average properties, fractions were selectively removed from the materials, either by solvent extraction at room temperature, or by TREF fractionation. The effect of removing these fractions on the ESCR was determined. The effect of the molecular composition of the three IPPCs on the ESCR of these materials, as well as the effect of the removal of the selected molecular fractions on the ESCR, morphology and molecular characteristics are discussed and compared. Conclusions are drawn as to the factors controlling ESCR in these materials.
|
Page generated in 0.0158 seconds