• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 381
  • 182
  • 143
  • 72
  • 50
  • 22
  • 17
  • 14
  • 13
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1054
  • 151
  • 149
  • 121
  • 97
  • 83
  • 82
  • 67
  • 65
  • 60
  • 58
  • 56
  • 55
  • 53
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Shape memory response and microstructural evolution of a severe plastically deformed high temperature shape memory alloy (NiTiHf)

Simon, Anish Abraham 12 April 2006 (has links)
NiTiHf alloys have attracted considerable attention as potential high temperature Shape Memory Alloy (SMA) but the instability in transformation temperatures and significant irrecoverable strain during thermal cycling under constant stress remains a major concern. The main reason for irrecoverable strain and change in transformation temperatures as a function of thermal cycling can be attributed to dislocation formation due to relatively large volume change during transformation from austenite to martensite. The formation of dislocations decreases the elastic stored energy, and during back transformation a reduced amount of strain is recovered. All these observations can be attributed to relatively soft lattice that cannot accommodate volume change by other means. We have used Equal Channel Angular Extrusion (ECAE), hot rolling and marforming to strengthen the 49.8Ni-42.2Ti-8Hf (in at. %) material and to introduce desired texture to overcome these problems in NiTiHf alloys. ECAE offers the advantage of preserving billet cross-section and the application of various routes, which give us the possibility to introduce various texture components and grain morphologies. ECAE was performed using a die of 90º tool angle and was performed at high temperatures from 500ºC up to 650ºC. All extrusions went well at these temperatures. Minor surface cracks were observed only in the material extruded at 500 °C, possibly due to the non-isothermal nature of the extrusion. It is believed that these surface cracks can be eliminated during isothermal extrusion at this temperature. This result of improved formability of NiTiHf alloy using ECAE is significant because an earlier review of the formability of NiTiHf using 50% rolling reduction concluded that the minimum temperature for rolling NiTi12%Hf alloy without cracks is 700°C. The strain level imposed during one 90° ECAE pass is equivalent to 69% rolling reduction. Subsequent to ECAE processing, a reduction in irrecoverable strain from 0.6% to 0.21% and an increase in transformation strain from 1.25% to 2.18% were observed at a load of 100 MPa as compared to the homogenized material. The present results show that the ECAE process permits the strengthening of the material by work hardening, grain size reduction, homogeneous distribution of fine precipitates, and the introduction of texture in the material. These four factors contribute in the increase of stability of the material. In this thesis I will be discussing the improvement of mechanical behavior and stability of the material achieved after various passes of ECAE.
512

Mesoporous silica/polymer nanocomposites

Liu, Yi 13 November 2009 (has links)
New approaches through grafting initiators onto the surface of inner-wall of mesoporous silica to synthesize polymer inside the nano-channels to obtain mesoporous silica/polymer nanocomposites were developed and investigated. Using the newly developed approach, PMMA was successfully synthesized through free radical polymerization and nylon 6 though in situ anionic ring-opening polymerization inside the nano-channels. The spherical mesoporous silica/PMMA composites we obtained showed a higher degradation temperature and narrower degradation range than pure commercially available PMMA. Spherical PMMA capsules were obtained after the silica network was dissolved with hydrofluoric acid, these pure PMMA spheres had the same thermal properties and morphology as they had with in the composites. The BMS/nylon 6 nanocomposites were spheres with the same diameter as pure BMS. About 50 wt% of the composites was newly synthesized nylon 6. The synthesized nylon 6 was proven to contain both α-form crystallite and γ-form crystallites with covalent bonds with the surface of silica inside the nano-channels.
513

Starch crosslinking for cellulose fiber modification and starch nanoparticle formation

Song, Delong 23 March 2011 (has links)
As a low cost natural polymer, starch is widely used in paper, food, adhesive, and many other industries. In order to improve the performance of starch, crosslinking is often conducted either in the processes of starch modification or during the application processes. Many crosslinkers have been developed in the past for crosslinking starch. Ammonium zirconium carbonate (AZC) is one of the common crosslinkers for crosslinking starch in aqueous solutions, having been widely used as a starch crosslinking agent in paper surface coating for more than 20 years. However, the mechanisms of starch crosslinking with AZC have not been well studied. In order to optimize the crosslinking chemistry of starch and find new paths for the utilization of starch in papermaking, a better understanding of the starch crosslinking mechanism is necessary. This thesis focuses on the fundamental study of starch crosslinking in an aqueous solution and its applications in fiber surface grafting, filler modification, and starch nanoparticle formation. Particularly, the thesis contains three major parts: (1) Mechanism study of starch crosslinking induced by AZC: In this thesis, the crosslinking (or gelation) kinetics of starch/AZC blends were investigated by using rheological measurements. The evolution of viscoelastic properties of AZC solutions and the AZC-starch blends was characterized. It was found that for both AZC self-crosslinking and AZC-starch co-crosslinking, the initial bond formation rate and the gel strength had a strong power law relationship with the concentrations of both AZC and starch. It is suggested that the development of the crosslinking network is highly dependent on the AZC concentration, while the starch concentration effect is less significant. It was determined that the activation energy of AZC self-crosslinking was approximately 145-151 kJ/mol, while the activation energy of AZC-starch co-crosslinking was 139 kJ/mol. (2) Fiber and filler modifications with starch and crosslinkers: Besides reacting with starch, AZC can react with cellulose which also contains hydroxyl groups. Theoretically, it is possible to use AZC as a crosslinker / coupling agent to graft starch onto cellulose fibers. It is believed that the grafted starch on fiber surfaces can improve the fiber bonding capability. In this thesis, a facile method to graft starch onto cellulose fiber surfaces through the hydrogen bond formation among cellulose, starch and AZC was developed. Compared with the paper sheets made of fibers with an industry refining level (420 ml CSF), the paper sheets made of fibers with a much lower refining degree but with grafted starch showed higher paper strengths, including the tensile strength, stiffness and z direction tensile; meanwhile, a faster drainage rate during web formation could also be achieved. Not only can the fiber-fiber bonding be improved by grafting starch onto fiber surfaces, but the filler-fiber bonding can also be improved if starch can be effectively coated on the filler surface. This concept has been supported by the early studies. In this thesis, the effects of the crosslinking of starch in the filler modification for the papermaking application were also studied. (3) Mechanism of starch nanoparticle formation during extrusion with crosslinkers: It was reported that starch crosslinking could facilitate the reduction of starch particle size during reactive extrusion. However, the mechanism of the particle size reduction by starch crosslinking was not illustrated. The reason that the crosslinking can cause the particle size reduction of starch during extrusion is fundamentally interesting. In this thesis, the mechanism of starch particle size reduction during extrusion with and without crosslinkers was investigated by identifying the contributions of thermal and mechanical effects. The effects of extrusion conditions, including temperature, screw speed, torque, starch water content and crosslinker addition, on the particle size were studied. It was found that the addition of crosslinkers could significantly increase the shear force (torque), and consequently facilitate the reduction of the particle size. The results indicate that for extrusion without a crosslinker, the starch particle size decreased with the increase of temperature. At 100 degree Celsius, the starch particles with a size of 300 nm could be obtained. With the addition of appropriate crosslinkers (glyoxal), the starch particle size could be reduced to around 160 nm, even at a lower extrusion temperature of 75 degree Celsius .
514

Modélisation et Commande d'un procédé d'Extrusion Réactive

Choulak, Samir Eddine 07 December 2004 (has links) (PDF)
Le but de cette étude est de proposer une loi de commande permettant de contrôler la qualité d'un polymère en sortie de filière d'une extrudeuse bivis corotative. Pour atteindre cet objectif, nous avons élaboré un modèle dynamique capable de prédire le comportement du système par rapport aux différentes variables d'actions (vitesse des vis, débit d'alimentation, puissances de chauffe des fourreaux et le rapport d'entrée monomère-amorceur). <br />La modélisation a été réalisée en adoptant une démarche mixte alliant l'aspect mécanique des milieux continus à celui du génie des procédés. Le schéma d'écoulement intrinsèquement à paramètres distribués, est approché par une cascade de réacteurs parfaitement agités avec reflux. Les caractéristiques de l'écoulement sont issues de la mécanique des fluides. Le modèle global est alors obtenu en écrivant sur chaque RCPA de la cascade les bilans d'énergie sur la matière, les fourreaux et les vis puis les bilans de masse globaux et par espèce. <br />Cette étape de modélisation a été suivie par une phase d'analyse dans le but de simplifier les phénomènes les moins influents sur l'évolution des variables d'état du procédé (température, pression, viscosité,...) puis par une étape de réduction de modèle. <br /><br />Enfin, la synthèse de la loi de commande a été effectuée à partir du linéarisé autour d'un point de fonctionnement de ce modèle réduit. La technique de commande utilisée a été la synthèse Hinf, avec modèle de référence sur la trajectoire en viscosité. Cette synthèse a abouti à une loi de commande satisfaisante fonctionnant à la fois sur le modèle linéarisé mais aussi sur le modèle complet non linéaire au voisinage du domaine de fonctionnement.
515

Kontinuierliche Herstellung von Legierungen aus Elastomerpartikeln und Polypropylen durch reaktive Aufbereitung in einem Gleichdralldoppelschneckenextruder

Wießner, Sven 15 July 2009 (has links) (PDF)
Gegenstand der Arbeit ist die Erarbeitung und Umsetzung eines reaktiven Aufbereitungsverfahrens im Doppelschneckenextruder zur kontinuierlichen Herstellung von gummimehlbasierten Elastomerlegierungen mit Polypropylenmatrix. Es wird eine Übersicht über den technischen Stand der Polymeraufbereitung in Doppelschneckenmaschinen sowie den Einsatz von Gummimehlen als funktionellem Füllstoff in Thermoplastmatrices gegeben, wobei neben verfahrenstechnischen Aspekten besonders auf die Möglichkeiten der Phasenkompatibilisierung in gummimehlhaltigen Polyolefincompounds zur Herstellung Thermoplastischer Elastomere eingegangen wird. Den Ausgangspunkt für die Verfahrensentwicklung bildet ein reaktiver Schmelzemischprozess in einem Innenmischer, auf dessen Basis die Auswahl der Rezepturkomponenten erfolgte. Gestützt auf eine Modellrezeptur erfolgte in diskontinuierlichen Voruntersuchungen im Labormesskneter eine Anpassung des Werkstoffsystems sowie die experimentelle Verifizierung möglicher Verfahrenskonzepte für die kontinuierliche reaktive Aufbereitung im Doppelschneckenextruder. Für die ausgewählten Verfahrenskonzepte wurden konkrete Extruderaufbauten konzipiert, deren stoff- und prozessgrößenabhängiges Betriebsverhalten auf Basis eines analytischen Prozessmodells abgeschätzt wurde. Nach vergleichenden experimentellen Untersuchungen der kontinuierlichen Verfahrensaufbauten, die auch Verweilzeitmessungen und Rezepturanpassungen einschlossen, wurde eine praxistaugliche Extruderkonfiguration ausgewählt und der Einfluss der technologischen Prozessgrößen auf die Werkstoffeigenschaften der Elastomerlegierungen untersucht. Mit optimierten Prozessparametern erfolgte die kontinuierliche reaktive Aufbereitung von Elastomerlegierungen mit variablen Gummimehlgehalten, deren Werkstoffverhalten umfassend charakterisiert wird / The present thesis deals with the development and implementation of a reactive compounding procedure in a co-rotating twin-screw extruder for the continuous preparation of ground rubber based Elastomeric Alloys with a polypropylene matrix. An overview about the state of the art of polymer compounding in twin-screw devices as well as of the utilisation of rubber powders as functional fillers in thermoplastic matrices is given. Beside process related aspects especially the methods of phase compatibilisation in ground rubber containing polyolefinic compounds for the preparation of Thermoplastic Elastomers are addressed. A reactive melt-mixing procedure in an internal mixer served as the base for the development of the continuous process as well as for the materials and formulations used. Preliminary experiments with a model formulation were carried out in a laboratory batch kneader to adapt the material system onto the requirements of the continuous process as well as to verify and select promising process concepts for the continuous reactive compounding in the twin-screw extruder. The selected concepts were transformed into extruder configurations followed by a simulation of their operating characteristics based on an analytical process model. The performance of the extruder configurations was verified by experiments that included also residence time investigations and further adaption of the formulation. The most suitable extruder setup was chosen for the investigation of the influence of the technological process parameters on the material properties of the Elastomeric Alloy model formulation. Using optimised technological parameters a familiy of Elastomeric Alloys with variable rubber powder content was prepared by continuous reactive compounding in the twin-screw extruder and followed by a comprehensive characterisation of their material performance and properties.
516

Multivariable predictive control development and application in food extrusion processes /

Hong, Feng, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 154-159). Also available on the Internet.
517

Effet du traitement thermique des graines de lin sur la biohydrogénation ruminale des acides gras polyinsaturés et la qualité de matière grasse du lait de vache

Akraim, Fowad Enjalbert, Francis January 2005 (has links)
Reproduction de : Thèse de doctorat : Sciences agronomiques : Toulouse, INPT : 2005. / Titre provenant de l'écran-titre. Bibliogr. 202 réf.
518

Multivariable predictive control development and application in food extrusion processes

Hong, Feng, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 154-159). Also available on the Internet.
519

Determination and implementation of polymer parameters into simulations of the twin-screw extrusion process.

Strandberg, Marcus January 2015 (has links)
This thesis was conducted in cooperation with a Swedish company that develops and manufactures plastic compounds. An increasing need for identifying material properties is seen within the industry in order to predict the outcome of the extrusion process by using simulations. The purpose of this study was to expand a material database with the results obtained through various measurements of the material parameters in order to enable simulations. The numerical descriptions would be analyzed and validated in relation to the obtained results and conducted methods to enable implementation of the material data into the industry. In order to fulfill the purpose, scientific methods was applied by chosen literature studies, research approaches and experimental research. Machine tests were conducted to collect relevant output data that was compared with the results obtained during the simulation process where the experimentally determined material parameters were applied in a material database. Typical injection molding qualities of PET, POM, PC/ABS, SAN and PA66 has been investigated by conducting measurement methods described by standards of the melt flow rate, specific heats, viscosity, crystallinity and melt- and glass transition temperatures. With exception of the viscosity, the material parameters are considered to have high external validity and high reliability and can be implemented into the industry. The bulk- and melt density was determined by adapted methods that need further investigations. The external validity is reduced until these methods and measurements have been validated. The determined material parameters proved to be able to generate reliable simulation results that indicate of how the extrusion process will turn out based on the output values investigated. The data obtained through machine tests was compared with the results that were achieved through simulations and deviated at most 10.9% from the actual outcomes. The viscosity is considered to be the main factor that affects the differences of the output data between the machine tests and the simulation results.
520

Formulation and processing technologies for dissolution enhancement of poorly water-soluble drugs

Hughey, Justin Roy 14 November 2013 (has links)
The number of newly developed chemical entities exhibiting poor water solubility has increased dramatically in recent years. In many cases this intrinsic property results in poor or erratic dissolution in biological fluids. Improving aqueous solubility of these compounds, even temporarily, can have a significant impact on in vivo performance. Single phase amorphous solid dispersions of a drug and polymer have emerged as a technique to not only increase the level of drug supersaturation but also maintain these levels for extended periods of time. Hot-melt extrusion (HME) has become the preferred processing technique to prepare systems such as these but has a number of limitations that prevent the successful formulation of many drug substances. Within this dissertation, the use of concentration enhancing polymers was investigated in parallel with a thorough evaluation of a novel fusion-based processing technique, KinetiSol® Dispersing (KSD), to prepare single phase amorphous solid dispersions that could not be successfully prepared by HME. Studies showed that the KSD technique is suitable for rendering thermally labile and high melting point drug substances amorphous through a combination of frictional and shearing energy. Compounds such as these were shown to degrade during HME processing due to relatively long residence times and low shear forces. Similarly, the KSD process was shown to successfully process solid dispersion compositions containing a high viscosity polymer with significantly lower levels of polymer degradation than obtained by HME processing. In the final study, KSD processing was used to prepare solid dispersions containing the hydrophilic polymer Soluplus[superscript TM] and methods were evaluated to formulate a tablet with rapid tablet disintegration characteristics, a requirement for sufficient dissolution enhancement. Combined, the studies demonstrated the effectiveness of combining proper polymer selection and formulation approaches with a suitable processing technique to form solid dispersion systems that provide rapid and extended durations of supersaturation. / text

Page generated in 0.0258 seconds