471 |
Elaboration et modification de séparateurs macroporeux innovants pour générateurs électrochimiquesDaux, Virgile 24 October 2011 (has links) (PDF)
Cette thèse de doctorat spécialité " Chimie et Sciences des Matériaux " s'inscrit dans le pôle de compétitivité Chimie-Environnement Axelera, ainsi que dans le sous-programme de R&D Sepbatt SP.4.2. Duramat. Son objectif est d'élaborer la mise en place d'un protocole de fabrication par extrusion d'une membrane poreuse pour supercapacité. Cette membrane très fine joue un rôle très important dans le générateur électrochimique. Elle permet en effet, grâce à sa porosité, la circulation des ions entre les deux électrodes tout en évitant les courts-circuits, mais assure aussi les bonnes propriétés mécaniques du dispositif final. La volonté du fabricant de ces supercapacités est d'étudier la possibilité d'utiliser un nouveau moyen de fabrication de membranes séparatrices par le biais de mélanges de polymères fluorés / poly(oxyéthylène) et de la technique d'extrusion. L'incompatibilité des différents composants utilisés conduit à des mélanges hétérogènes révélant des structures multiphasiques présentant différentes morphologies. Il est alors important de caractériser et d'étudier l'évolution de ces morphologies et plus spécifiquement la morphologie co-continue. Différentes études ont ainsi été réalisées pour caractériser cette évolution. Les diagrammes de continuité des systèmes ont été déterminés grâce à la technique d'extraction sélective et confirmés par microscopie électronique à balayage alors qu'une étude rhéologique a permis de mettre en place une relation entre la morphologie et le comportement en fondu des différents systèmes utilisés. Le projet est ensuite finalisé grâce aux caractérisations physico-chimiques des membranes poreuses extrudées
|
472 |
Modélisation du mélange de polymères chargés et de la casse de fibres rigides en extrusion bivisDurin, Audrey 04 April 2012 (has links) (PDF)
Dans cette thèse, nous avons voulu exploiter et étendre les outils de simulation à notre disposition pour proposer des méthodes de caractérisation et de prédiction du mélange à différentes échelles. À l'échelle locale d'écoulements macroscopiques, nous avons voulu exploiter les possibilités offertes par le logiciel de simulation 3D éléments finis XimeX® et y apporter des améliorations dans le but d'obtenir un outil d'étude du mélange distributif de particules dans un polymère par extrusion bivis. Nous avons ainsi enrichi la méthode éléments finis existante à l'aide de la bibliothèque éléments finis CimLib© du Cemef pour atteindre une plus grande précision de calcul, puis nous avons testé plusieurs méthodes de lâchers de particules afin de simuler le déplacement de charges dans la matrice polymère au cours du mélange. Nous avons ensuite appliqué quelques méthodes de caractérisations du mélange, dont une inédite, à ces lâchers de particules, et ce dans le cas de plusieurs géométries de vis. À l'échelle de la particule, on s'est intéressé aux mécanismes conduisant à la casse de fibres rigides, telles que les fibres de verre, lors du mélange avec un polymère en extrusion bivis. Nous avons choisi de faire des hypothèses assez importantes afin de simplifier ce problème extrêmement complexe et nous avons proposé une méthode de simulation de l'évolution de la distribution des longueurs de fibres le long de l'écoulement basée sur la conservation de la masse des fibres. Nous avons utilisé comme paramètres de cette simulation les résultats de calcul 1D obtenus par le logiciel Ludovic® qui repose sur des approches de type ALH. Nous avons ensuite comparé quelques résultats de calcul à des distributions de longueurs mesurées sur des échantillons prélevés le long d'une extrudeuse bivis.
|
473 |
Étude expérimentale et modélisation thermomécanique de l'étape de calibration dans le procédé d'extrusion de tubes en polyamide 12Carin, Aurélien 28 November 2005 (has links) (PDF)
Dans le procédé d'extrusion de tubes en polyamide 12, l'étape de calibration a une influence prépondérante sur les propriétés mécaniques résultantes. Lors de la calibration, le polymère fondu est tiré à travers un manchon cylindrique (calibre) situé dans un bac à eau sous vide. Le niveau de vide (dépression DP) est ajustable. Un débit d'eau (débit de suintement DSU) est appliqué à l'entrée du calibre et permet la formation d'un film d'eau qui lubrifie le contact tube/calibre. La calibration combine une trempe et un étirage des couches extérieures du tube, ce qui conduit à une orientation moléculaire importante dans cette zone (zone de peau). Par ailleurs, l'état de surface du tube est défini par les conditions de contact entre tube et calibre. La vitesse du polymère en entrée de calibre et l'épaisseur du film d'eau entre tube et calibre ont été mesurées. Nous avons ainsi montré qu'augmenter la lubrification dans le calibre amène à une diminution du taux d'étirage dans le calibre, taux noté DrCAL (rapport entre la vitesse de ligne et la vitesse en entrée de calibre). Niveau de lubrification et état de surface ont été corrélés par rugosimétrie. Par ailleurs, l'orientation des couches externes a été évaluée par des mesures de biréfringence. Une corrélation nette a été montrée entre la biréfringence en peau (DnPEAU) et DrCAL: réduire DrCAL conduit à une orientation plus faible en surface. Une modélisation thermomécanique a permis de déterminer la carte de température au cours du refroidissement, et de montrer de quelle manière les forces d'étirage se concentrent en peau lors de la cristallisation et génèrent des contraintes à l'origine de l'orientation dans le produit final. Enfin, DnPEAU et l'état de surface ont été reliés aux propriétés mécaniques: l'allongement à la rupture augmente lorsque l'orientation diminue et que le nombre de défauts de surface est limité. Connaissant les relations entre les paramètres du procédé, la structure des tubes, et les propriétés mécaniques, il est à présent possible d'adapter les paramètres de calibration de façon à augmenter le niveau de lubrification au sein du calibre et à réduire le taux d'étirage dans le calibre pour améliorer systématiquement les propriétés mécaniques résultantes.
|
474 |
Réalisation de nanocomposites polypropylène / argile par extrusion bivisLertwimolnun, Wiboon 16 May 2006 (has links) (PDF)
Ce travail a pour objectif l'étude de la réalisation de nanocomposites polypropylène (PP)/argile organophile (org-MMT) par mélange à l'état fondu. Il s'est articulé autour de trois thèmes principaux, qui sont l'effet des compatibilisants de type PP-g-MA et l'influence du procédé d'extrusion bivis sur l'état de dispersion, ainsi que le comportement rhéologique des nanocomposites en régime transitoire. L'importance des compatibilisants (PP-g-MA), et notamment leur concentration dans le système PP/PP-g-MA/org-MMT, a été mise en évidence. Un modèle rhéologique simple (loi de Carreau-Yasuda à seuil), a été proposé pour caractériser quantitativement le degré de dispersion à travers la valeur du seuil d'écoulement. En extrusion bivis, l'état de dispersion dépend fortement des conditions opératoires (vitesse de rotation N et débit Q), principalement du rapport Q/N. Des prélèvements locaux le long des vis ont révélé que l'essentiel de l'exfoliation s'est effectué lors de la fusion. Cette dernière apparaît comme l'étape gouvernant le processus de dispersion en extrusion bivis. Les relations entre le procédé et l'état de dispersion ont également été étudiées à l'aide du logiciel Ludovic©. Enfin, le comportement rhéologique des nanocomposites en régime transitoire a été étudié. On observe un pic de contrainte au démarrage, ainsi qu'un effet de restructuration après un temps de repos. Deux modèles théoriques développés initialement pour des suspensions colloïdales et des suspensions de fibres ont été utilisés pour décrire les phénomènes observés.
|
475 |
Évolution des propriétés rhéologiques des enrobés bitume, vers une loi vieillissement/viscositéMouazen, Mouhamad 15 September 2011 (has links) (PDF)
Cette thèse est un apport à la compréhension de l'évolution des propriétés rhéologiques des enrobés bitume soumis à une irradiation γ. La prédiction du gonflement suivant la composition radiologique d'un enrobé est nécessaire pour évaluer l'intégrité des colis, en particulier durant la phase de réversibilité du stockage (durée séculaire). Le but de cette thèse est donc d'acquérir les données expérimentales rhéologiques et leur évolution sous irradiation pour in fine prédire l'évolution dans le temps des colis de bitume en terme de gonflement. C'est la raison pour laquelle une stratégie a été mise en place. Après avoir caractérisé le comportement du bitume exempt de sels grâce aux mesures rhéologiques et thermiques, une série d'extrusion d'enrobés modèles a été préparée. En extrusion bivis, l'état de dispersion dépend fortement des conditions opératoires (vitesse N et débit Q) et principalement du rapport N/Q ; des valeurs extrêmes de N/Q montrent un seuil d'écoulement élevé qui est un indicateur de l'amélioration de l'état de dispersion. Par ailleurs, l'enrobé industriel montre la viscosité la plus importante par rapport aux enrobé modèles, ce qui limite la migration des bulles. Une grande partie de ce travail a été consacrée à l'effet de l'irradiation γ sur le comportement du bitume et des enrobés. Des modifications externes et des changements structuraux ont lieu sous irradiation. A la fin de ce manuscrit, un modèle basé sur l'expression de Krieger-Dougherty a été établi et qui montre une très bonne adaptation aux résultats expérimentaux.
|
476 |
Mécanismes d'action de "Polymer Processing Aids" fluorés durant l'extrusion d'un polyéthylène basse densité linéaire : études expérimentales et interprétationsDubrocq-Baritaud, Claire 17 December 2008 (has links) (PDF)
Les procédés d'extrusion de polymères linéaires se trouvent souvent limités en débit de production par l'apparition de défauts de surface qui altèrent la qualité des produits. Des " Polymer Processing Aids " (PPAs) à base de polymères fluorés sont alors utilisés industriellement pour éliminer les défauts de surface, encore appelés " peau de requin ". Trois PPAs sont étudiés en procédé d'extrusion sur un polyéthylène basse densité linéaire (PEBDL) présentant un important défaut de surface. Pour cela, une filière plate transparente permet le suivi instantané de la pression, de la vitesse dans l'écoulement par vélocimétrie laser Doppler, et l'analyse de la surface de la filière après récupération d'inserts amovibles. Les extrusions de PEBDL avec PPA montrent qu'après un temps de latence, le défaut de peau de requin se met à disparaître et la pression en filière à diminuer de manière simultanée. Des observations par microscopie électronique à balayage (MEB) montrent l'apparition et l'évolution de dépôts micrométriques fluorés à la surface de la filière. L'évolution du profil de vitesse en filière indique que du glissement à la paroi apparaît simultanément à la chute de pression, et dépend de la localisation sur la filière en accord avec les observations du dépôt. L'influence des paramètres d'extrusion (débit, état de surface et nature de la filière) et des paramètres relatifs aux PPAs (concentration, nature, taille des particules) est investiguée de manière à comprendre les mécanismesd'action des PPAs. Nous mettons en évidence une corrélation spatio-temporelle entre la surface de dépôt fluoré et le glissement à la paroi. La question du lien entre les actions multi-échelles des PPAs est alors abordée. Un modèle microscopique expliquant l'apparition du dépôt hétérogène à la paroi de la filière est développé et comparé aux résultats expérimentaux.
|
477 |
Food quality and properties of quality protein maize.Leal Diaz, Ana Maria 30 September 2004 (has links)
Quality protein maize (QPM), high protein corn (HPC) and food grade maize (FGM) were processed into tortillas and direct expanded extruded snacks. QPM had similar test weight, density and kernel size with 45% more lysine and 38% more tryptophan compared to FGM. HPC had the largest kernel with density and test weight similar to FGM. During alkaline cooking, HPC absorbed water faster than QPM and FGM. White QPM required shorter cooking time and had less dry matter losses compared to FGM. All corn varieties had excellent pericarp removal at the optimum cooking time. Tortillas from QPM had better pliability and rollability after storage compared to FGM and HPC. HPC tortillas had lower rupture force after storage. The use of QPM for tortilla production may reduce energy and sewage cost, and could produce a tortilla with longer shelf stability with improved nutritional value. Decorticated and non-decorticated QPM, FGM and HPC grain were processed into corn meal and direct expanded snacks. A modified short scale dry milling system was used to produce the corn meal. QPM produced more coarse meal with greater fat content compared to FGM. Decortication decreased fiber content and coarse meal yield. Non-decorticated meal had greater protein, fiber and fat content compared to decorticated meal. The modified short flow milling system provides reduced lost fractions for extrusion into nutritionally improved products. Extrusion was performed in a low cost friction extruder. QPM extruded faster than FGM and HPC. FGM required greater specific mechanical energy than QPM. Extrudates from FGM were the most expanded followed by QPM and HPC. Extrudates from the three corn varieties were acceptable to the panelists and decortication did not affect acceptability. The improved nutritional value of QPM, was retained during dry milling and extrusion. Current QPM varieties can be processed into tortillas with longer shelf stability and meal for extrusion into a wide variety of snacks and other foods. These may have application in specialty health foods and in developing countries where maize is a staple food.
|
478 |
Shape memory response and microstructural evolution of a severe plastically deformed high temperature shape memory alloy (NiTiHf)Simon, Anish Abraham 12 April 2006 (has links)
NiTiHf alloys have attracted considerable attention as potential high temperature Shape Memory Alloy (SMA) but the instability in transformation temperatures and significant irrecoverable strain during thermal cycling under constant stress remains a major concern. The main reason for irrecoverable strain and change in transformation temperatures as a function of thermal cycling can be attributed to dislocation formation due to relatively large volume change during transformation from austenite to martensite. The formation of dislocations decreases the elastic stored energy, and during back transformation a reduced amount of strain is recovered. All these observations can be attributed to relatively soft lattice that cannot accommodate volume change by other means. We have used Equal Channel Angular Extrusion (ECAE), hot rolling and marforming to strengthen the 49.8Ni-42.2Ti-8Hf (in at. %) material and to introduce desired texture to overcome these problems in NiTiHf alloys. ECAE offers the advantage of preserving billet cross-section and the application of various routes, which give us the possibility to introduce various texture components and grain morphologies. ECAE was performed using a die of 90º tool angle and was performed at high temperatures from 500ºC up to 650ºC. All extrusions went well at these temperatures. Minor surface cracks were observed only in the material extruded at 500 °C, possibly due to the non-isothermal nature of the extrusion. It is believed that these surface cracks can be eliminated during isothermal extrusion at this temperature. This result of improved formability of NiTiHf alloy using ECAE is significant because an earlier review of the formability of NiTiHf using 50% rolling reduction concluded that the minimum temperature for rolling NiTi12%Hf alloy without cracks is 700°C. The strain level imposed during one 90° ECAE pass is equivalent to 69% rolling reduction. Subsequent to ECAE processing, a reduction in irrecoverable strain from 0.6% to 0.21% and an increase in transformation strain from 1.25% to 2.18% were observed at a load of 100 MPa as compared to the homogenized material. The present results show that the ECAE process permits the strengthening of the material by work hardening, grain size reduction, homogeneous distribution of fine precipitates, and the introduction of texture in the material. These four factors contribute in the increase of stability of the material. In this thesis I will be discussing the improvement of mechanical behavior and stability of the material achieved after various passes of ECAE.
|
479 |
Severe plastic deformation of difficult-to-work alloysYapici, Guney Guven 30 September 2004 (has links)
The present work aims to reveal the microstructural evolution and post-processing mechanical behavior of difficult-to-work alloys upon severe plastic deformation. Severe plastic deformation is applied using equal channel angular extrusion (ECAE) where billets are pressed through a 90o corner die achieving simple shear deformation. Three different materials are studied in this research, namely Ti-6Al-4V, Ti-6Al-4V reinforced with 10% TiC and AISI 316L stainless steel. Microstructure and mechanical properties of successfully extruded billets were reported using light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), tension and compression experiments and microhardness measurements. The effects of extrusion conditions (temperature and processing route) on the microstructure and mechanical properties are investigated. The underlying mechanisms responsible for observed mechanical behaviors are explored. It is seen that ECAE shear deformation leads to refinement in α plates and elimination of prior β boundaries in Ti-6Al-4V. Decreasing extrusion temperature and increasing number of passes decreases α plate size and grain size. Refined α grain size leads to a significant increase in tensile and compressive flow stresses at room temperature. Texture produced by ECAE has a pronounced effect on mechanical properties. Specifically it leads to tension/compression asymmetry in flow strengths and strain hardening coefficients may be described by the activation of differing slip systems under tension and compression loading. ECAE of Ti-6Al-4V+10%TiC samples also improved mechanical properties due to α plate size refinement. Nevertheless, further extrusion passes should be carried out for tailoring reinforcement size and distribution providing optimum strength and ductility. ECAE deformation of AISI 316L stainless steel at high homologous temperatures (0.55 to 0.60 Tm) results in deformation twinning as an effective deformation mechanism which is attributed to the effect of the high stress levels on the partial dislocation separation. Deformation twinning gives rise to high stress levels during post-processing room temperature tension and compression experiments by providing additional barriers to dislocation motion and decreasing the mean free path of dislocations. The highest tensile flow stress observed in the sample processed at 700 oC following one pass route A was on the order of 1200 MPa which is very high for 316L stainless steel. The ultimate goal of this study is to produce stabilized end microstructures with improved mechanical properties and demonstrate the applicability of ECAE on difficult-to-work alloys.
|
480 |
Transfer Layer Formation And Friction In Extrusion Of Aluminum : An Experimental Study Using A High Temperature Vacuum Based Pin-On-Disc MachineRanganatha, S 04 1900 (has links)
Hot extrusion of aluminum is widely practiced in industries for economic production of structural components. The surface finish and tolerance of the extruded components, both from design and aesthetic requirement, are important parameters. Hot extrusion involves forcing of aluminum in the form of a billet at a predetermined temperature through a shaped opening called die. Attempts, over time, are made to evolve the die profile to produce quality components. The main geometric feature of the die enables it in imparting plastic deformation and subsequent surface generation of the extrudate. The surface of extrudate is generated on the portion of the die called bearing channel or die land. Aluminum metal which moves relative to bearing channel experiences a different state-of-stress as it passes through the bearing channel. At the entry side of the bearing channel, the stress is compressive which is large in magnitude and this magnitude of compressive stress gets diminished as metal moves towards exit side and eventually becomes zero at the exit. Temperature gradients and its distribution along the bearing channel, similar to stress gradient, are reported. Literature reports formation of the transfer layer on the bearing channel. The transfer layer is of two distinctive types, the one near entry side which virtually leads to contact between aluminum and die steel and the other nearer to exit side which isolates aluminum from die steel. The understanding of the mechanism of formation of transfer layer is most important since it is instrumental in determining the surface finish of the extruded component.
All of the previous studies were conducted either in an actual extrusion press or using an instrumented extrusion press in the laboratory. The variables during these experiments could be the temperature of billet, extrusion ratio and speed of ram. Conducting these experiments using extrusion press is expensive and time consuming. To do experiments where the condition in a bearing channel can be simulated would be useful in conducting a more comprehensive study. To simulate the condition in the bearing channel a high temperature vacuum based pin-on-disc machine is designed and built. The fact that in a bearing channel there is virtually metal to metal contact with minimal or no chance of any intervening oxide layer, necessitated studies to be conducted under vacuum. A pin-on-disc test conducted under vacuum and high temperature would almost simulate condition on a bearing channel. Using this specially designed and built experimental setup the parameters influencing the transfer layer formation, temperature, sliding speed, load on the specimen, vacuum level and surface characteristics of the die are studied. Another feature of the test rig is that the configuration of pin and disc setup is vertical, which is different from regular pin on disc tribo-system, where pin and disc are held in horizontal configuration. The advantage of holding in vertical configuration is to eliminate the possibility of trapping the debris which alters the existing friction force and conditions.
The test rig is constructed using a cylindrical shell and a matching dome shell. The test rig, to facilitate the isolation of the instrumentations used to measure the forces and wear from the heat source is partitioned into two portions. The cylindrical bottom compartment called test chamber and dome shaped top compartment called sensor chambers are separated by a plate. On the plate in the sensor chamber, a load-cell to pickup friction force, a linear variable differential transformer (LVDT) to measure linear wear and loading lever mechanisms for imparting normal load and measuring friction force are fitted. The lever mechanism, in particular the one which magnifies the normal load is designed to conserve the space in the vacuum chamber. Housing the instrumentation inside the vacuum chamber thereby reducing the number of ports required to sense mechanical signals, increases the efficiency of the pumping system. The cylindrical shell of the testing chamber is a double walled structure and water cooled in order to prevent the exposer of sensors to higher testing temperature. Rubber ‘O’ rings are used, wherever it is required to seal the vacuum.
The necessary temperature required at the contact interface in the testing chamber is obtained by an electric resistance furnace, which is configured in such a way in the chamber that the heat generated is completely directed to the area where pin and disc are positioned. The interface temperature is monitored using a chromal-alumal thermocouple which is fixed very close to sliding interface on the pin holder. The power input to the furnace is controlled using PID (proportional integral derivative).
The required sliding speed is achieved with the help of direct current (DC) servomotor. The shaft on which the disc or ring is fixed is connected to a timer-pulley. The timer-pulley in turn is connected to servomotor through a timer-belt. The diameter ratio of the driving pulley and driven -timer-pulley is selected in such a way that the rpm of driven-pulley is reduced by four times and the torque increased by four times resulting in a more stable mechanical input to the sliding pair. The necessary high vacuum level in the test chamber is created by using rotary pump and diffusion pump combination.
Following tests are carried out.
1. Compression test: The strain rate response of aluminum (6060) under compressive state of loading is studied at strain rates 10-3s-1, 10-2s-1, 10-1s-1, 1s-1, 10s-1 and 102sand temperature ranging from 573 to 823K. The compression specimen is machined out of homogenized aluminum alloy (6060) cast ingots. True stress and true strain are estimated from load-displacement data of compression test. The true stress and true strain data are made use of in predicting the friction coefficient and sliding mode during sliding of aluminum relative to die steel at various temperature and other independent variables in vacuum.
2. The tensile test: A series of tensile tests at different temperatures and 10-1s-1 strain rate are conducted. The temperatures employed are from 423K to 723K. True stress, true strain, ultimate tensile strength and total percentage of elongation are estimated using load displacement data. The estimated ultimate tensile strength and total percentage of elongation are used for qualitatively explaining the morphology of transfer layer formed in the sliding experiments under different independent variables like temperature, speed, normal load, and surface texture of steel surface.
3. Adhesion test: The interaction at different temperature between the die steel (H11) and aluminum (6060) pair under static load is studied by conducting test in vacuum. The pin is made of homogenized aluminum and disc is made of die steel whose surface is generated by polishing on diamond paste until the average surface roughness (Sa) is of the order of 0.1 microns. The test temperatures are varied from 423 to 723K. The result is used in qualitatively explaining the morphology of transfer layer formed during sliding of aluminum and die steel pair in vacuum at various temperature, speeds and, normal load.
4. Sliding experiment: Steel pin and aluminum disc Pin on disc experiments are conducted at different temperatures in vacuum of the order of 4X10-4Pa. The experiments are conducted employing factorial design. The temperature, speed and load are the experimental parameters. The pin and disc are respectively made out of die steel and aluminum. Experiments are carried out with normal loads 20N, 40N, 63N, 80N, and 100N and speeds 0.1ms-1, 0.3ms-1, 0.5ms-1, 1.0ms-1, and 1.5ms-1 and with temperature over a range from 423 to 773K. The sliding distance covered is 500 meters. The friction force during sliding is monitored and used for estimating friction coefficient. Scanning electron microscopic study is carried out on surface, subsurface, wear track. The results, specifically, the friction coefficient and morphology of transfer layer are used to evaluate the influence of independent parameters on transfer mechanisms. The data generated from subsurface study and compression tests are used for estimating friction coefficient using Rigney’s plastic deformation model at 0.1ms-1.
5. Sliding experiment: aluminum pin and Steel disc The experiments reported in the previous paragraph where aluminum disc is slid against die steel pin had developed only the stresses of the order 16MPa. The estimated magnitude of stress level on bearing surface of extrusion die by various methods including numerical analysis is found to be more than 16MPa. In order to achieve a higher magnitude of stress and preserve the transfer layer mechanism, sliding an aluminum pin over the part of the textured surface of die steel ring is carried out. The changed boundary condition resulted in a nominal stress of 28 MPa which is comparatively more at 723K. The experiments are conducted employing factorial design. The other advantage of doing these experiments is that the effect of texture on the die surface can be studied by sliding aluminum pin over various surfaces. Thus temperature and surface texture are the experimental parameters for the present test. Different textured die steel surface is generated by machining process like, milling, electro discharge machining (EDM), wire electro discharge machining, silicon carbide slurry polishing, silicon carbide wheel grinding, CNC-milling and diamond paste polishing. Thus surfaces are basically of two types 1) with a lay on the surface and 2) a random surface. The tests are conducted at ambient temperature, 423, 573, 673, and 723K with a normal load of 56N and speed of 0.129ms-1. The morphology of transfer layer on the die steel ring is studied in scanning electron microscope. The friction coefficient is estimated from monitored friction force. The average surface roughness (Sa), results of compression test, and transfer layer are made use of to identify the sliding mode. The sliding of aluminum pin on diamond polished surface showed interesting results. Hence, another series of experiments using only diamond polished surface are conducted. The surface roughness of the steel surface achieved is 0.05 micro-meters. The load is 47N and speed is 0.043ms-1. The morphology of transfer layer and pin surface is studied using a Scanning Electron Microscope.
Results of compression and tensile test:
The flow stress is found to decrease with increase in compression test temperature. The SEM micrograph indicates large amount of fragmentation of harder phase with increase in strain rate at all temperature except for 423K. The fractured surface under tensile loading shows both intergranular and transgranular failure.
Results of adhesion test:
The area covered by the material transfer is found to increase with increase in temperature. The test can be used, to study the adhesive tendency between two pair of contacting surfaces. The area covered by the material transfer is found to be maximum at 723K.
Results of sliding of die-steel pin on aluminum disc in vacuum:
1. The ANOVA (analysis of variance) results indicate the existence of transition speed of about 0.5ms-1, more than which the friction coefficient was found constant. The extrusion speeds employed in industries are in the range of 0.1ms-1 to 1.7ms-1 and the transition speed found in the present study is within this range.
2. The magnitude of friction, with a few exceptions, is found to be independent of temperature and sliding speed when the sliding speed is 0.5ms-1and above. The invariance of friction coefficient with temperature and sliding speed beyond 0.5ms-1 is beneficial in that it will not lead to any instability like stick-slip or squeal.
3. Though both ambient temperature and speed influence the morphology of transfer layer and friction coefficient, speed is found to be dominant according to statistical analysis.
4. The observed dependency of friction coefficient and morphology of transfer layer on test temperature and normal load is attributed to decrease in flow stress and increase in friction factor ‘m’, a ratio of interfacial shear stress to shear yield stress of the softer material. Though ANOVA shows the significance of speed and not that of temperature, the observed dependence of friction coefficient on temperature is attributed to the enhanced effect of adhesion at elevated temperature observed in the adhesion test.
5. The state of stress at the contacting surface is found to control the morphology of transfer layer. When the normal load exceeded 40N, it gave rise to higher magnitude of stress state at the contacting surface, resulting in formation of continuous transfer layer and hence the higher magnitude of friction coefficient.
6. Plastic deformation model based on Rigney’s approach for estimating friction coefficient can be used. The estimated friction coefficient is on the higher side. Hence, any design of equipments based on the Rigney’s plastic deformation model is a conservative design.
7. There appears to be a close relation between the morphology of wear track and quantity of wear-loss. The formation of debris and rough track, primarily for low temperature sliding indicate larger magnitude of wear-loss. The parameters, which bring about increased ductility of aluminum as observed in the case of higher temperature of sliding, results in reduced wear-loss due to large scale smearing and back transfer of material.
The results of sliding of aluminum pin on die-steel ring in vacuum:
1. The mode of sliding changes from adhesive to abrasive mode depending on depth of penetration, tan(θ) where θ is the base angle of the conical asperity and average roughness parameter Sa ,all of them in turn depend on morphology of die steel surface and test temperature.
2. The friction coefficient and morphology of transfer layer are found to depend on the mode of sliding. The sub-surface plastic deformation, which characterizes the friction coefficient and morphology of transfer layer, is dependent on temperature of sliding.
3. The sliding experiment is capable of simulating the stress state on the bearing channel of the die; elucidating evolution of transfer layer, with change in operating parameters.
4. The ANOVA has clearly indicated the significance in friction coefficient at different temperatures and surface textures. In addition, the complex comparison below and above homogenization temperature (573K) has indicated significance in friction coefficient and thereby recognizing the importance of extrusion of aluminum at a temperature where it is in a single phase. Also, ANOVA indicates the dependency of both friction coefficient and transfer layer on the texture, i.e. either a lay or random.
The results of sliding aluminum pin on diamond polished die steel ring:
1. Shearing of the cold welded junction is a probable mechanism involved in the formation of transfer layer up to 423K.
2. The transgranular and intergranular mode of fracture are identified to be the two possible modes of fracture of the asperity at temperatures greater than 573K. The large ductility of the aluminum alloy facilitated smearing resulting in a continuous transfer layer at temperatures greater than 573K.
3. The formation of a continuous transfer layer at temperatures greater than 573K is responsible for the observed high friction coefficient at these temperatures. Scanning electron microscopy observations of the fracture surfaces of the tensile test specimen revealed fracture to be a combination of both transgranular and intergranular modes.
|
Page generated in 0.0302 seconds