• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation and analysis of p23 and calnexin deficient mice

Denzel, Angela January 1999 (has links)
No description available.
2

STRUCTURAL BASIS OF LMAN1 CARGO CAPTURE IN ER & RELEASE IN ERGIC

Das, Vaijayanti 30 July 2012 (has links)
No description available.
3

Cornichon Proteins: Unexpected Roles in Plant Pathogen Infection, ER Morphology Maintenance and Pollen Development

Li, Jianhui 17 May 2017 (has links)
Cornichon (CNI) proteins are a conserved family of proteins among eukaryotes, from Erv14 in the yeast Saccharomyces cerevisiae to CNI homologs (CNIHs) in mammals and plants. Erv14 functions as a cargo receptor of coat protein complex II (COPII) for protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus, en route to their final destinations. By interacting with specific cargo proteins, CNI proteins regulate key steps of embryo polarity in Drosophila, budding in yeast, and synaptic transmission in the mammalian brain. However, we have very limited understanding of plant CNIHs. Positive-strand RNA viruses assemble their viral replication complexes (VRCs) at specific host organelle membranes. With a better understanding of host factors involved in targeting viral replication proteins to the preferred organelles, we expect to block trafficking of viral replication proteins and thus, viral infection, by manipulating the required host proteins. Brome mosaic virus (BMV) is a model of positive-strand RNA viruses and its replication can be recapitulated in yeast. Importantly, BMV replication protein 1a is the only required viral protein to form VRCs at the perinuclear ER membrane in yeast. I demonstrate that Erv14 and COPII coat proteins are required for targeting BMV 1a to the perinuclear ER in yeast, suggesting a novel function of COPII vesicles in protein trafficking to the perinuclear ER membrane and in the BMV VRC formation. As for cellular functions, I show that plant CNIHs complement the defective distribution of BMV 1a in yeast mutant lacking Erv14. Taking advantage of Arabidopsis thaliana knockout mutants and knockdown of gene expression in Nicotiana benthamina, I also discover that CNIHs unexpectedly play crucial roles in pollen development, infection of a bacterial pathogen, and maintenance of ER tubules. I further confirm that CNI proteins are also required for maintaining ER tubules in yeast, suggesting a novel and conserved role in shaping ER morphology. Therefore, these findings indicate the functional diversity and redundancy of CNI proteins in key cellular processes and suggest a novel strategy to control plant pathogenic viruses and bacteria by manipulating plant CNIHs. / Ph. D. / Many cellular proteins play important roles in plant development but unfortunately are hijacked by plant viral, bacterial, and/or fungal pathogens for their infections. Cornichon (CNI) proteins are a conserved family of proteins and a great example that is involved in both plant development and plant pathogen infection. CNI protein was first described in a <i>Drosophila</i> mutant. Only 3% of mutant cells survived, but showed abnormal phenotype in abdominal segmentation with a similar shape of “pickle” during embryo development. Later on, this family of proteins was well studied in yeast and mammals but rarely studied in plants. Erv14, one of CNI proteins in yeast, is a cargo receptor of coat protein complex II (COPII) vesicles that participate in cellular early secretory pathway. COPII vesicles serve as cellular carriers to recruit cargo proteins from the endoplasmic reticulum (ER) membrane and depart for the Golgi apparatus, en route to their final destinations for proper cellular processes. In this dissertation, I have discovered that Erv14 and COPII components are unexpectedly involved in targeting a replication protein of a plant RNA virus to the perinuclear ER membrane, instead of the Golgi apparatus, suggesting a novel function of COPII in targeting proteins to the perinuclear ER. Erv14 has never been shown as involved in viral infection and thus, my work has identified a new host protein required for viral infection. I have further explored the cellular functions of CNI proteins in plants, and found that plant CNI proteins play significant roles in maintaining cellular ER network, supporting normal pollen development, and bacterial pathogen infection. Therefore, plant CNI proteins function similarly as Erv14 to recruit various cargo proteins into COPII vesicles en route to their final destinations for proper cellular processes. These cellullar processes may include, but are not limited to: ER morphology maintenance, pollen development, and plant immune response to pathogen infection. Furthermore, it is possible to develop a novel strategy to make plants resistant to plant viruses and/or bacteria by manipulating plant CNIHs.
4

Rôle de la SNARE Memb11 comme « récepteur » de la GTPase Arf1 à l’appareil de Golgi chez Arabidopsis thaliana / Role of the SNARE Memb11 as "receptor" of the GTPase Arf1 at the Golgi apparatus of Arabidopsis thaliana

Marais, Claire-Line 16 December 2013 (has links)
Les protéines SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) sont essentielles pour la fusion membranaire. J'ai étudié chez Arabidopsis thaliana la SNARE Memb11 de l’appareil de Golgi qui intervient au début de la voie sécrétoire à l'interface Réticulum endoplasmique (RE)-appareil de Golgi. Dans les cellules de mammifères, l'orthologue de Memb11 (Membrine) est un « récepteur » potentiel de la GTPase Arf1 à la membrane golgienne. Cette dernière est impliquée dans le recrutement de la machinerie COPI nécessaire au transport rétrograde de l'appareil de Golgi vers le RE. Le but de ce travail était de déterminer si Memb11 pouvait interagir avec Arf1 dans les cellules végétales. Des anticorps dirigés contre la partie cytosolique de Memb11 ont été obtenus et ont été utilisés sur tissus végétaux pour réaliser des immunomarquages en microscopie électronique à transmission et des immunoprécipitations sur extraits de plantes. Il a été démontré que Memb11 est située au niveau de la membrane cis-golgienne et qu'elle co-immunoprécipite avec Arf1, suggérant ainsi que Arf1 peut interagir avec Memb11. J'ai confirmé l'interaction de Memb11 et Arf1 au niveau de l'appareil de Golgi par des expériences de BiFC (Bimolecular Fluorescence Complementation) in vivo. Cette interaction est spécifique puisque ni Memb12 (90% d'identité avec Memb11) ni Sec22 interagissent avec Arf1. Grâce à une approche de bioinformatique structurale, j'ai déterminé les régions de Memb11 (différentes de Memb12) qui pourraient être critiques pour l'interaction et j’ai commencé à tester in vivo les mutants correspondants par BiFC. En outre, des expériences d’immunoprécipitations avec des protéines recombinantes produites in vitro suggèrent que la forme d’Arf1 liée au GTP interagit avec Memb11. / The SNARE proteins (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) are critical for membrane fusion in the secretory pathway. I have studied the Golgi SNARE Memb11 in Arabidopsis thaliana cells. Memb11 is involved at the ER-Golgi interface. In mammalian cells, the ortholog of Memb11 (Membrin) is the potential “receptor” of the GTPase Arf1 in the Golgi membrane. This protein is involved for the recruitment of the COPI machinery, required for retrograde transport from the Golgi to the ER. The aim of this work was to determine whether Memb11 can interact with Arf1 in plant cells. Antibodies against the cytosolic part of Memb11 were obtained and were applied on plant tissues to perform immunolabeling by transmission electron microscopy and immunoprecipitation (IP) studies. It has been shown that Memb11 is located at the cis-Golgi and that it co-immunoprecipated with Arf1, suggesting that Arf1 may interact with Memb11. I confirmed the interaction of Memb11 and Arf1 at the Golgi by in vivo BiFC (Bimolecular Fluorescence Complementation) experiments. This interaction was specific since neither Memb12 (90% identity with Memb11) nor Sec22 interacted with ARF1. Thanks to a structural bioinformatic approach, I determined the regions in Memb11 (different from Memb12) that could be critical for the interaction and started to test corresponding mutants in vivo by BiFC. In addition, IP experiments with recombinant proteins produced in vitro suggest that the GTP-bound form of ARF1 interacts with Memb11.

Page generated in 0.0635 seconds