• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 2
  • Tagged with
  • 40
  • 40
  • 21
  • 12
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ∼ 7

Strandet, M. L., Weiss, A., Breuck, C. De, Marrone, D. P., Vieira, J. D., Aravena, M., Ashby, M. L. N., Béthermin, M., Bothwell, M. S., Bradford, C. M., Carlstrom, J. E., Chapman, S. C., Cunningham, D. J. M., Chen, Chian-Chou, Fassnacht, C. D., Gonzalez, A. H., Greve, T. R., Gullberg, B., Hayward, C. C., Hezaveh, Y., Litke, K., Ma, J., Malkan, M., Menten, K. M., Miller, T., Murphy, E. J., Narayanan, D., Phadke, K. A., Rotermund, K. M., Spilker, J. S., Sreevani, J. 15 June 2017 (has links)
We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at z = 6.900 +/- 0.002. SPT0311-58 was discovered via its 1.4 mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an Atacama Large Millimeter/submillimeter Array 3 mm frequency scan that detected CO(6-5), CO(7-6), and [C I](2-1), and subsequently was confirmed by detections of CO(3-2) with the Australia Telescope Compact Array and[C II] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [C I] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of M-gas = 3.3 +/- 1.9 x 10(11) M-circle dot. Its large mass and intense star formation is very rare for a source well into the epoch of reionization.
12

Phase Transitions in the Early Universe: The Cosmology of Non-minimal Scalar Sectors

Kost, Jeffrey David, Kost, Jeffrey David January 2017 (has links)
Light scalar fields such as axions and string moduli can play an important role in early-universe cosmology. However, many factors can significantly impact their late-time cosmological abundances. For example, in cases where the potentials for these fields are generated dynamically --- such as during cosmological mass-generating phase transitions --- the duration of the time interval required for these potentials to fully develop can have significant repercussions. Likewise, in scenarios with multiple scalars, mixing amongst the fields can also give rise to an effective timescale that modifies the resulting late-time abundances. Previous studies have focused on the effects of either the first or the second timescale in isolation. In this thesis, by contrast, we examine the new features that arise from the interplay between these two timescales when both mixing and time-dependent phase transitions are introduced together. First, we find that the effects of these timescales can conspire to alter not only the total late-time abundance of the system --- often by many orders of magnitude --- but also its distribution across the different fields. Second, we find that these effects can produce large parametric resonances which render the energy densities of the fields highly sensitive to the degree of mixing as well as the duration of the time interval over which the phase transition unfolds. Finally, we find that these effects can even give rise to a "re-overdamping" phenomenon which causes the total energy density of the system to behave in novel ways that differ from those exhibited by pure dark matter or vacuum energy. All of these features therefore give rise to new possibilities for early-universe phenomenology and cosmological evolution. They also highlight the importance of taking into account the time dependence associated with phase transitions in cosmological settings. In the second part of this thesis, we proceed to study the early-universe cosmology of a Kaluza-Klein (KK) tower of scalar fields in the presence of a mass-generating phase transition, focusing on the time-development of the total tower energy density (or relic abundance) as well as its distribution across the different KK modes. We find that both of these features are extremely sensitive to the details of the phase transition and can behave in a variety of ways significant for late-time cosmology. In particular, we find that the interplay between the temporal properties of the phase transition and the mixing it generates are responsible for both enhancements and suppressions in the late-time abundances, sometimes by many orders of magnitude. We map out the complete model parameter space and determine where traditional analytical approximations are valid and where they fail. In the latter cases we also provide new analytical approximations which successfully model our results. Finally, we apply this machinery to the example of an axion-like field in the bulk, mapping these phenomena over an enlarged axion parameter space that extends beyond those accessible to standard treatments. An important by-product of our analysis is the development of an alternate "UV-based" effective truncation of KK theories which has a number of interesting theoretical properties that distinguish it from the more traditional "IR-based" truncation typically used in the literature.
13

Origins for dark matter particles : from the "WIMP miracle" to the "FIMP wonder" / Origines pour les particules de matière noire : du "miracle WIMP" à une "merveille FIMP

Dutra, Maíra 19 February 2019 (has links)
Cela fait plus de 80 ans que nous avons des preuves qu'environ 26% de la densité d'énergie de l'univers actuel se présente sous la forme de matière noire, qui interagit avec la matière ordinaire strictement par gravitation. Avec les neutrinos massifs, l’existence de particules de matière noire (DM) indique qu’il faut étendre le modèle standard de la physique des particules (SM) pour en tenir compte. Dans cette thèse, nous explorons la relation étroite entre la nature des couplages reliant la DM aux particules du SM et la production de l'abondance de la DM dans l'univers primordial. Nous commençons par examiner la classe la plus prédictive de candidats DM, les particules massives à interaction faible (WIMP). Leurs masses et couplages sont comparables à ceux du SM, et donc les deux secteurs ont déjà été en équilibre thermique, et l'abondance de DM respecte automatiquement les limites cosmologiques -- le "miracle WIMP". Les limites expérimentales actuelles repoussent l'espace paramétrique viable des modèles WIMP vers des limites complexes, rendant nécessaire l'ajout de particules supplémentaires dans le secteur sombre et la vérification plus précise de la condition de découplage. Après avoir considéré le statut phénoménologique d'une gamme significative de modèles pour les WIMP avec des masses dans l'intervalle 10-10⁴ GeV, nous examinons la phénoménologie d'une DM sur l'échelle MeV dans un modèle de portail Z'. En plus de chercher à améliorer la recherche de WIMPs, il convient de considérer le cas dans lequel DM et SM interagissent si faiblement qu’ils n’ont jamais atteint l’équilibre. Les particules massives à interaction faible (FIMP) sont des candidats DM produits à partir du SM dans des processus hors d'équilibre, un mécanisme appelé freeze-in. Nous montrons que si des champs lourds (10¹⁰-10¹⁶ GeV) interviennent dans les interactions DM-SM, le freeze-in est une possibilité naturelle qui fournit la bonne abondance de DM sans qu'il soit nécessaire d'imposer couplages extrêmement petits. Ces champs lourds sont en fait nécessaires dans des scénarios à hautes énergies théoriquement bien motivés tels que le GUT, le see-saw, la leptogénèse et l’inflation -- nous appelons cette coïncidence intéressante la "merveille FIMP". Nous explorons différentes réalisations de cette possibilité, avec des modèles impliquant des moduli, fermions, bosons de jauge et champs de spin-2 comme les médiateurs lourds. Nous montrons enfin dans quels cas la production de DM pendant le reheating après inflation a un impact sur l’espace paramétrique de tels modèles. / For more than eighty years, we face evidence that about 26% of the energy budget of the universe today is in the form of dark matter, whose interaction with ordinary matter is felt only gravitationally. Along with massive neutrinos, the existence of dark matter particles (DM) indicate that we must extend the standard model of particle physics (SM) in order to account for them. In this thesis, we explore the close relationship between the nature of couplings connecting DM to the SM sector and the production of the DM relic density in the Early Universe. We start by considering the most predictive class of DM candidates, the weakly interacting massive particles (WIMPs). Their masses and couplings are comparable to the SM ones, which ensure that both sectors were once in thermal equilibrium and automatically render the DM relic density within the inferred range -- the so-called "WIMP miracle". The current experimental bounds push the viable parameter space of WIMP models to complex corners, making necessary to add extra particles in the dark sector and to check the decoupling condition more carefully. After reviewing the phenomenological status of a comprehensive spectrum of models for WIMPs with masses in the range 10-10⁴ GeV, we consider the challenging phenomenology of an MeV DM in a Z' portal model. Besides seeking to improve the search for WIMPs, it is worth considering the case in which DM and SM interact so feebly that they had never reached equilibrium. Feebly interacting massive particles (FIMPs) are DM candidates produced from the SM thermal bath in out-of-equilibrium processes, a mechanism called freeze-in. We show that if heavy fields (10¹⁰-10¹⁶ GeV) mediate the DM-SM interactions, the freeze-in is a natural possibility that provide the right amount of DM in the universe without the need of extremely small gauge, yukawa or quartic couplings. Such heavy fields are actually needed in theoretically well motivated high-energy scenarios like for instance GUT, seesaw, leptogenesis and inflation -- we call this interesting coincidence the "FIMP wonder". We explore different realizations of such possibility, with models involving moduli, fermions, gauge bosons and spin-2 fields as heavy mediators. We finally show in which cases the DM production during reheating have impact on the parameter space of such models.
14

Dark matter in and around stars

Sivertsson, Sofia January 2009 (has links)
There is by now compelling evidence that most of the matter in the universe is in the form of dark matter, a form of matter quite different from the matter we experience in every day life. The gravitational effects of this dark matter have been observed in many different ways but its true nature is still unknown. In most models dark matter particles can annihilate with each other into standard model particles. The direct or indirect observation of such annihilation products could give important clues for the dark matter puzzle. For signals from dark matter annihilations to be detectable, typically high dark matter densities are required. Massive objects, such as stars, can increase the local dark matter density both via scattering off nucleons and by pulling in dark matter gravitationally as the star forms. Dark matter annihilations outside the star would give rise to gamma rays and this is discussed in the first paper. Furthermore dark matter annihilations inside the star would deposit energy inside the star which, if abundant enough, could alter the stellar evolution. Aspects of this are investigated in the second paper. Finally, local dark matter overdensities formed in the early universe could still be around today; prospects of detecting gamma rays from such clumps are discussed in the third paper. / Introduktionsdelen till en sammanläggningsavhandling
15

Formation of supermassive black holes in the high-redshift universe / 宇宙初期の超巨大ブラックホール形成

Inayoshi, Kohei 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18065号 / 理博第3943号 / 新制||理||1568(附属図書館) / 30923 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中村 卓史, 教授 鶴 剛, 教授 畑 浩之 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
16

Searching the Cosmos: Ripples from Avant-Garde Cosmological Probes

Montero Camacho, Paulo 02 October 2019 (has links)
No description available.
17

Modelling barium isotopes in metal-poor stars

Gallagher, Andrew James January 2012 (has links)
The principal theory concerning the origin of the elements heavier than the Fe-peak, such as Ba, strongly suggest that for old, metal-poor environments, the rapid (r-) process is the most likely path taken in their synthesis, while the slow (s-) process becomes more substantial in younger, more metal-rich stellar populations. In this work I test this theory by evaluating the isotope ratios of Ba. It is understood that Ba consists of seven stable isotopes, five of which are synthesised by the two neutron-capture processes. The two odd isotopes, 135,137Ba, as well as 138Ba are synthesised via both the r- and s-processes while two of the even isotopes, 134,136Ba are synthesised via the s-process only. The relative contribution of the r- and s-process to these isotopes can be understood via nucleosynthesis calculations and is described using the parameter fodd, where fodd = [N (135Ba) + N (137Ba)] /N (Ba). Low values of fodd (~0.11) indicate an s-process regime, while high values of fodd (~0.46) indicate an r-process regime. In the Ba II 4554 A line the even isotopes lie close to the line centre, while the odd isotopes, which are hyperfine split because of their non-zero nuclear spin, lie in the wings of the line. From an analysis of the line profile shape, one can determine whether Ba has been synthesised primarily through the r-process or s-process; a broad, asymmetric line would indicate a high r-process contribution, while a line with a deeper core and shallower wings would indicate a high s-process contribution. Using the radiative transfer code ATLAS, which assumes local thermodynamic equilibrium (LTE) and employs 1-dimensional (1D) KURUCZ06 model atmospheres, I synthesised line profiles for six metal-poor stars: HD140283, HD122563, HD88609, HD84937, BD-04 3208 and BD+26 3578 - for a range of isotope ratios. All six are of sufficiently low metallicity that Ba was expected to have an r-process origin. These were fit to high resolution (R\equiv \lamda/\Delta\lamda = 90 000 - 95 000), high signal-to-noise to the Ba II 4554 A line which has multiple components. In the first test, synthetic spectra were computed using the non local thermodynamic equilibrium (NLTE) radiative transfer code MULTI. The synthetic line profiles were fit to a number of lines in HD140283. Although this technique might have improved the fit in the line core, it was found that such a treatment did not improve upon fitting errors associated with the best fit 1D LTE synthetic profiles. The second test used a 3-dimensional (3D) radiative transfer code (LINFOR3D) that employed 3D, time-dependent atmospheres produced with CO5BOLD. The 3D synthetic pro les were fit to a selection of Fe lines and improvements over the poor fits produced by the 1D LTE synthesis were seen. It was found that the 3D synthesis could almost completely reproduce the line asymmetries seen in the observed stellar spectrum. This result suggests that further work to refine the 3D calculations and synthesis code would be valuable.
18

Cosmological consequences of supersymmetric flat directions

Riva, Francesco January 2009 (has links)
In this work we analyze various implications of the presence of large field vacum expectation values (VEVs) along supersymmetric flat directions during the early universe. First, we discuss supersymmetric leptogenesis and the gravitino bound. Supersym- metric thermal leptogenesis with a hierarchical right-handed neutrino mass spectrum normally requires the mass of the lightest right-handed neutrino to be heavier than about 109 GeV. This is in conflict with the upper bound on the reheating temperature which is found by imposing that the gravitinos generated during the reheating stage after inflation do not jeopardize successful nucleosynthesis. We show that a solution to this tension is actually already incorporated in the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right- handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the gravitino bound if two conditions are satisfied: the initial value of the flat direction must be close to Planckian values and the phase-dependent terms in the flat direction potential are either vanishing or sufficiently small. We then show that flat directions also contribute to the total curvature perturbation. Such perturbation is generated at the first oscillation of the flat direction condensate when the latter relaxes to the minimum of its potential after the end of inflation. If the contribution to the total curvature perturbation from supersymmetric flat direction is the dominant one, then a significant level of non-Gaussianity in the cosmological perturbation is also naturally expected. Finally, we argue that supersymmetric flat direction VEVs can decay non perturbatively via preheating even in the case where they undergo elliptic motion in the complex plane instead of radial motion through the origin. It has been generally argued that in this case adiabaticity is never violated and preheating is inefficient. Considering a toy U(1) gauge theory, we explicitly calculate the scalar potential, in the unitary gauge, for excitations around several flat directions. We show that the mass matrix for the excitations has non-diagonal entries which vary with the phase of the flat direction vacuum expectation value. Furthermore, this mass matrix has zero eigenvalues whose eigenstates change with time. We show that these light degrees of freedom are produced copiously in the non-perturbative decay of the flat direction VEV.
19

THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY

Strandet, M. L., Weiss, A., Vieira, J. D., de Breuck, C., Aguirre, J. E., Aravena, M., Ashby, M. L. N., Béthermin, M., Bradford, C. M., Carlstrom, J. E., Chapman, S. C., Crawford, T. M., Everett, W., Fassnacht, C. D., Furstenau, R. M., Gonzalez, A. H., Greve, T. R., Gullberg, B., Hezaveh, Y., Kamenetzky, J. R., Litke, K., Ma, J., Malkan, M., Marrone, D. P., Menten, K. M., Murphy, E. J., Nadolski, A., Rotermund, K. M., Spilker, J. S., Stark, A. A., Welikala, N. 10 May 2016 (has links)
We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI], [NII], H2O and NH3. We further present Atacama Pathfinder Experiment [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 +/- 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 +/- 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.
20

Detecting cosmological reionization on large scales through the 21 cm HI line

Chippendale, Aaron Paul January 2009 (has links)
Doctor of Philosophy (PhD) / This thesis presents the development of new techniques for measuring the mean redshifted 21 cm line of neutral hydrogen during reionization. This is called the 21 cm cosmological reionization monopole. Successful observations could identify the nature of the first stars and test theories of galaxy and large-scale structure formation. The goal was to specify, construct and calibrate a portable radio telescope to measure the 21 cm monopole in the frequency range 114 MHz to 228 MHz, which corresponds to the redshift range 11.5 > z > 5.2. The chosen approach combined a frequency independent antenna with a digital correlation spectrometer to form a correlation radiometer. The system was calibrated against injected noise and against a modelled galactic foreground. Components were specified for calibration of the sky spectrum to 1 mK/MHz relative accuracy. Comparing simulated and measured spectra showed that bandpass calibration is limited to 11 K, that is 1% of the foreground emission, due to larger than expected frequency dependence of the antenna pattern. Overall calibration, including additive contributions from the system and the radio foreground, is limited to 60 K. This is 160 times larger than the maximum possible monopole amplitude at redshift eight. Future work will refine and extend the system known as the Cosmological Reionization Experiment Mark I (CoRE Mk I).

Page generated in 0.0738 seconds