Spelling suggestions: "subject:"earthquake engineering."" "subject:"arthquake engineering.""
101 |
Shake table experiments for the determination of the seismic response of jumbo container cranesJacobs, Laura Diane 15 November 2010 (has links)
Container cranes represent one of the most critical components of ports worldwide. Despite their importance to port operations, the seismic behavior of cranes has been largely ignored. Since the 1960s, industry experts have recommended allowing cranes to uplift, believing that it would limit the amount of seismic loading. However, modern cranes have become larger and more stable, and the industry experts are now questioning the seismic performance of modern jumbo cranes.
The main goal of this research was to experimentally investigate the seismic behavior of container cranes from the general elastic behavior through collapse, including non-linear behavior such as buckling and cross section yielding, utilizing the 6 degree-of-freedom shake tables at the University at Buffalo. The testing was divided into two phases. The first phase of testing was conducted on a 1/20th scale model. The second phase of testing was conducted on a 1/10th scale model, which was designed such that no inelastic action would develop prior to uplift (as is the common design practice). In support of the experiments, finite element models were created to determine what simplifications could be made to the structure to aid in testing. The data collected from the testing has been used to validate finite element models, to give a better understanding of the behavior of container cranes under seismic excitations, validate fragility models, and to develop recommendations and guidelines for the design and testing of container cranes.
|
102 |
Next generation seismic fragility curves for california bridges incorporating the evolution in seismic design philosophyRamanathan, Karthik Narayan 02 July 2012 (has links)
Quantitative and qualitative assessment of the seismic risk to highway bridges is crucial in pre-earthquake planning, and post-earthquake response of transportation systems. Such assessments provide valuable knowledge about a number of principal effects of earthquakes such as traffic disruption of the overall highway system, impact on the regions' economy and post-earthquake response and recovery, and more recently serve as measures to quantify resilience. Unlike previous work, this study captures unique bridge design attributes specific to California bridge classes along with their evolution over three significant design eras, separated by the historic 1971 San Fernando and 1989 Loma Prieta earthquakes (these events affected changes in bridge seismic design philosophy). This research developed next-generation fragility curves for four multispan concrete bridge classes by synthesizing new knowledge and emerging modeling capabilities, and by closely coordinating new and ongoing national research initiatives with expertise from bridge designers.
A multi-phase framework was developed for generating fragility curves, which provides decision makers with essential tools for emergency response, design, planning, policy support, and maximizing investments in bridge retrofit. This framework encompasses generational changes in bridge design and construction details. Parameterized high-fidelity three-dimensional nonlinear analytical models are developed for the portfolios of bridge classes within different design eras. These models incorporate a wide range of geometric and material uncertainties, and their responses are characterized under seismic loadings. Fragility curves were then developed considering the vulnerability of multiple components and thereby help to quantify the performance of highway bridge networks and to study the impact of seismic design principles on the performance within a bridge class. This not only leads to the development of fragility relations that are unique and better suited for bridges in California, but also leads to the creation of better bridge classes and sub-bins that have more consistent performance characteristics than those currently provided by the National Bridge Inventory. Another important feature of this research is associated with the development of damage state definitions and grouping of bridge components in a way that they have similar consequences in terms of repair and traffic implications following a seismic event. These definitions are in alignment with the California Department of Transportation's design and operational experience, thereby enabling better performance assessment, emergency response, and management in the aftermath of a seismic event. The fragility curves developed as a part of this research will be employed in ShakeCast, a web-based post-earthquake situational awareness application that automatically retrieves earthquake shaking data and generates potential damage assessment notifications for emergency managers and responders. / Errata added at request of advisor and approved by Graduate Office, March 15 2016.
|
103 |
Seismic performance evaluation of switchboard cabinets using nonlinear numerical modelsHur, Jieun 27 August 2012 (has links)
Past earthquake events have shown that seismic damage to electrical power systems in commercial buildings, hospitals, and other systems such as public service facilities can cause serious economic losses as well as operational problems. A methodology for evaluation of the seismic vulnerability of electrical power systems is needed and all essential components of the system must be included. A key system component is the switchboard cabinet which houses many different elements which control and monitor electrical power usage and distribution within a building. Switchboard cabinets vary in size and complexity and are manufactured by a number of different suppliers; a typical cabinet design was chosen for detailed evaluation in this investigation.
This study presents a comprehensive framework for the evaluation of the seismic performance of electrical switchboard cabinets. This framework begins with the introduction and description of the essential equipment in building electrical power systems and explains possible seismic damage to this equipment. The shortcomings of previous studies are highlighted and advanced finite element models are developed to aid in their vulnerability estimation. Unlike previous research in this area, this study proposes practical, computationally efficient, and versatile numerical models, which can capture the critical nonlinear behavior of switchboard cabinets subjected to seismic excitations. A major goal of the current study was the development of nonlinear numerical models that can accommodate various support boundary conditions ranging from fixed, elasto-plastic to free.
Using both linear and nonlinear dynamic analyses, this study presents an enhanced evaluation of the seismic behavior of switchboard cabinets. First the dynamic characteristics of switchboard cabinets are determined and then their seismic performance is assessed through nonlinear time history analysis using an expanded suite of ground motions. The seismic responses and associated ground motions are described and analyzed using probabilistic seismic demand models (PSDMs). Based on the PSDMs, the effectiveness and practicality of common intensity measures are discussed for different components. Correlation of intensity measures and seismic responses are then estimated for each component, and their seismic performance and uncertainties are quantified in terms of engineering demand parameters. The results of this study are intended for use in the seismic vulnerability assessment of essential electrical equipment in order to achieve more reliable electrical power systems resulting in reduced overall risk of both physical and operational failures of this important class of nonstructural components.
|
104 |
Guidance for the design of pile groups in laterally spreading soilHaskell, Jennifer Jane Margaret January 2014 (has links)
No description available.
|
105 |
Influence of ground motion selection on computed seismic sliding block displacementPeterman, Breanna Rose 11 September 2014 (has links)
Seismic slope stability is often evaluated via permanent displacement analyses, which quantify the cumulative, downslope displacement of a sliding mass subjected to earthquake loading. Seismic sliding block displacements provide a useful index as to the seismic performance of a slope. Seismic sliding block displacements can be computed for a suite of acceleration-time histories selected to fit a design event.
This thesis explores the effect of ground motion selection on computed seismic sliding block displacements through two approaches. First, rigid sliding block displacements were computed for ground motion suites developed to fit uniform hazard spectra (UHS), conditional mean spectra (CMS), and conditional probability distributions for peak ground velocity (PGV) and Arias Intensity (Ia). Evaluation of the suites in terms of their PGV and Ia distributions provided useful insight into the relative displacements computed for the suites. The PGV and Ia distributions of the suite selected to fit the UHS exceed the theoretical distributions of these ground motion parameters. In fact, the scaled Ia values of motions in the UHS suite are greater than the largest Ia values in the Next Generation Attenuation (NGA) ground motion database. As such, the displacements computed for the UHS suite exceed the displacements computed for any other suite. If only two ground motion parameters are to be considered in ground motion selection we recommend those parameters be PGA and PGV. However, it is important to consider PGA, PGV, and Ia when developing ground motion suites for permanent displacement analyses.
Next, the use of simulated ground motions for permanent displacement analyses was addressed by comparing displacements computed for simulated ground motions to displacements computed for the corresponding recorded ground motion. Simulated ground motions generated via four seismological models were considered: the deterministic Composite Source Model (CSM), the stochastic model EXSIM, the deterministic-stochastic hybrid model by Graves and Pitarka (GP), and the deterministic-stochastic hybrid model developed at San Deigo State University (SDSU). The displacements computed for the SDSU simulations were the most similar to those computed using the recorded motions, with the average displacement of the SDSU simulations exceeding that of the corresponding recorded ground motion by about 6%. Additionally, the displacements from the SDSU simulations provided the smallest variability about the displacements computed for the recorded motions. / text
|
106 |
Probabilistic Quantification of the Effects of Soil-Shallow Foundation-Structure Interaction on Seismic Structural ResponseMoghaddasi Kuchaksarai, Masoud January 2012 (has links)
Previous earthquakes demonstrated destructive effects of soil-structure interaction on structural response. For example, in the 1970 Gediz earthquake in Turkey, part of a factory was demolished in a town 135 km from the epicentre, while no other buildings in the town were damaged. Subsequent investigations revealed that the fundamental period of vibration of the factory was approximately equal to that of the underlying soil. This alignment provided a resonance effect and led to collapse of the structure. Another dramatic example took place in Adapazari, during the 1999 Kocaeli earthquake where several foundations failed due to either bearing capacity exceedance or foundation uplifting, consequently, damaging the structure. Finally, the Christchurch 2012 earthquakes have shown that significant nonlinear action in the soil and soil-foundation interface can be expected due to high levels of seismic excitation and spectral acceleration. This nonlinearity, in turn, significantly influenced the response of the structure interacting with the soil-foundation underneath.
Extensive research over more than 35 years has focused on the subject of seismic soil-structure interaction. However, since the response of soil-structure systems to seismic forces is extremely complex, burdened by uncertainties in system parameters and variability in ground motions, the role of soil-structure interaction on the structural response is still controversial. Conventional design procedures suggest that soil-structure interaction effects on the structural response can be conservatively ignored. However, more recent studies show that soil-structure interaction can be either beneficial or detrimental, depending on the soil-structure-earthquake scenarios considered.
In view of the above mentioned issues, this research aims to utilise a comprehensive and systematic probabilistic methodology, as the most rational way, to quantify the effects of soil-structure interaction on the structural response considering both aleatory and epistemic uncertainties. The goal is achieved by examining the response of established rheological single-degree-of-freedom systems located on shallow-foundation and excited by ground motions with different spectral characteristics. In this regard, four main phases are followed.
First, the effects of seismic soil-structure interaction on the response of structures with linear behaviour are investigated using a robust stochastic approach. Herein, the soil-foundation interface is modelled by an equivalent linear cone model. This phase is mainly considered to examine the influence of soil-structure interaction on the approach that has been adopted in the building codes for developing design spectrum and defining the seismic forces acting on the structure. Second, the effects of structural nonlinearity on the role of soil-structure interaction in modifying seismic structural response are studied. The same stochastic approach as phase 1 is followed, while three different types of structural force-deflection behaviour are examined. Third, a systematic fashion is carried out to look for any possible correlation between soil, structural, and system parameters and the degree of soil-structure interaction effects on the structural response. An attempt is made to identify the key parameters whose variation significantly affects the structural response. In addition, it is tried to define the critical range of variation of parameters of consequent. Finally, the impact of soil-foundation interface nonlinearity on the soil-structure interaction analysis is examined. In this regard, a newly developed macro-element covering both material and geometrical soil-foundation interface nonlinearity is implemented in a finite-element program Raumoko 3D. This model is then used in an extensive probabilistic simulation to compare the effects of linear and nonlinear soil-structure interaction on the structural response.
This research is concluded by reviewing the current design guidelines incorporating soil-structure interaction effects in their design procedures. A discussion is then followed on the inadequacies of current procedures based on the outcomes of this study.
|
107 |
The Nonlinear Dynamics Involved in the Seismic Assessment and Retrofit of Reinforced Concrete BuildingsQuintana-Gallo, Patricio Ignacio January 2014 (has links)
Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints.
The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’.
In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included.
In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen.
Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed.
During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.
|
108 |
Simplified Assessment Procedure to Determine the Seismic Vulnerability of Reinforced Concrete Bridges in IndianaFarida Ikpemesi Mahmud (6845639) 15 August 2019 (has links)
<div><div><div><p>The possibility of earthquakes in Indiana due to the presence of the New Madrid Seismic Zone is well known. However, the identification of the Wabash Valley Seismic Zone has increased our understanding of the seismic hazard in the state of Indiana. Due to this awareness of the increased potential for earthquakes, specifically in the Vincennes District, the seismicvulnerability of Indiana’s bridge network must be assessed. As such, the objective of this thesis is to develop a simplified assessment procedure that can be used to conduct a state-wide seismic vulnerability assessment of reinforced concrete bridges in Indiana.</p><p>Across the state, variability in substructure type, seismic hazard level, and soil site class influences the vulnerability of bridges. To fully understand the impact of this variation, a detailed assessment is completed on a representative sample. Twenty-five reinforced concrete bridges are selected across the state, and analyzed using information from the bridge drawings and a finite element analysis procedure. These bridges are analyzed using synthetic ground motions representative of the hazard level in Indiana. The results of the detailed analysis are used to develop a simplified assessment procedure that uses information that is available in BIAS or can be added to BIAS. At this time, BIAS does not contain all the necessary information required for accurate estimates of dynamic properties, thus, certain assumptions are made. Several candidate models are developed by incrementally increasing the level of information proposed to be added into BIAS, which resulted in an increase in the level of accuracy of the results. The simplified assessment is then validated through a comparison with the detailed analysis.</p><p>Through the development of the simplified assessment procedure, the minimum data item which must be added to BIAS to complete the assessment is the substructure type, and bridges with reinforced concrete columns in the substructure require a detailed assessment. Lastly, by increasing the level of information available in BIAS, the agreement between the results of the simplified assessment and the detailed assessment is improved.</p></div></div></div>
|
109 |
Development of a Performance-Based Procedure to Predict Liquefaction-Induced Free-Field Settlements for the Cone Penetration TestHatch, Mikayla Son 01 June 2017 (has links)
Liquefaction-induced settlements can cause a large economic toll on a region, from severe infrastructural damage, after an earthquake occurs. The ability to predict, and design for, these settlements is crucial to prevent extensive damage. However, the inherent uncertainty involved in predicting seismic events and hazards makes calculating accurate settlement estimations difficult. Currently there are several seismic hazard analysis methods, however, the performance-based earthquake engineering (PBEE) method is becoming the most promising. The PBEE framework was presented by the Pacific Earthquake Engineering Research (PEER) Center. The PEER PBEE framework is a more comprehensive seismic analysis than any past seismic hazard analysis methods because it thoroughly incorporates probability theory into all aspects of post-liquefaction settlement estimation. One settlement estimation method, used with two liquefaction triggering methods, is incorporated into the PEER framework to create a new PBEE (i.e., fully-probabilistic) post-liquefaction estimation procedure for the cone penetration test (CPT). A seismic hazard analysis tool, called CPTLiquefY, was created for this study to perform the probabilistic calculations mentioned above. Liquefaction-induced settlement predictions are computed for current design methods and the created fully-probabilistic procedure for 20 CPT files at 10 cities of varying levels of seismicity. A comparison of these results indicate that conventional design methods are adequate for areas of low seismicity and low seismic events, but may significantly under-predict seismic hazard for areas and earthquake events of mid to high seismicity.
|
110 |
Development of a Performance-Based Procedure for Assessment of Liquefaction-Induced Free-Field SettlementsPeterson, Brian David 01 December 2016 (has links)
Liquefaction-induced settlement can cause significant damage to structures and infrastructure in the wake of a seismic event. Predicting settlement is an essential component of a comprehensive seismic design. The inherent uncertainty associated with seismic events makes the accurate prediction of settlement difficult. While several methods of assessing seismic hazards exist, perhaps the most promising is performance-based earthquake engineering, a framework presented by the Pacific Earthquake Engineering Research (PEER) Center. The PEER framework incorporates probability theory to generate a comprehensive seismic hazard analysis. Two settlement estimation methods are incorporated into the PEER framework to create a fully probabilistic settlement estimation procedure. A seismic hazard analysis tool known as PBLiquefY was updated to include the fully probabilistic method described above. The goal of the additions to PBLiquefY is to facilitate the development of a simplified performance-based procedure for the prediction of liquefaction-induced free-field settlements. Settlement estimations are computed using conventional deterministic methods and the fully probabilistic procedure for five theoretical soil profiles in 10 cities of varying seismicity levels. A comparison of these results suggests that deterministic methods are adequate when considering events of low seismicity but may result in a considerable under-estimation of seismic hazard when considering events of mid to high seismicity.
|
Page generated in 0.0722 seconds