• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ecological genomics for the conservation of Dwarf Birch

Borrell, James S. January 2017 (has links)
The persistence of woody plant populations faces numerous environmental challenges, including climate change, hybridisation and population fragmentation. Here I explore the genomic signatures and relative importance of these pressures in Dwarf Birch (Betula nana), which has declined significantly over the last century across the Scottish Highlands. Firstly, I find that future climate is likely to result in a significant range reduction and that relict populations are likely to display reduced fitness. Secondly, I show that combining multiple mutation rate markers yields more accurate estimates of demographic history and the impact of fragmentation. I develop a novel method to derive high mutation rate markers from short sequencing reads, to facilitate more widespread application. Thirdly, I assess the degree of local adaptation, and explore potential for composite provenancing for the restoration of B. nana populations. Surprisingly, the data yields little evidence of adaptive introgression from the related tree B. pubescens, suggesting that this may not be an alternative route to climate tolerance. Finally, I review published literature on the population structure and genetic diversity of genus Betula in Europe and consider options for the conservation and management of B. nana, including assisted gene flow and prioritization of in situ genetic diversity.
2

Comparative responses of salmon to sea lice Lepeophtheirus salmonis infections, and lice responses to chemical and environmental stressors

Sutherland, Ben James Gerard 29 May 2014 (has links)
Systems biology methods can provide novel insight into the responses of an organism to a suboptimal environment, an infection or exposure to a xenobiotic. In the interaction of salmon and salmon lice, there are several areas requiring further research. These include the impacts of lice infection on wild salmon, response mechanisms of different salmon species or life stages to lice infections, effects of environmental conditions on lice stress, and mechanisms underlying the emergence of resistance to important parasiticidal chemicals. Here, I combine global gene expression analyses with phenotypic and physiological responses of salmon or salmon lice to further our understanding of these topics. In the first chapter, I introduce the work by discussing relevant background material on the current knowledge of salmon and salmon lice interactions, salmon immunity, the state of salmon and louse genomics and the emerging field of ecological genomics. I also discuss how these approaches are applied to the study of non-model organisms and sustainable aquaculture development and fisheries conservation. In the second chapter, I present the first large-scale transcriptome profiling of a Pacific salmon to a salmon lice infection, identifying transcript signatures associated with an infection in a sensitive life stage of pink salmon Oncorhynchus gorbuscha. In the third chapter, I present the results of multiple co-habitation infections of three species of Pacific and Atlantic salmon to compare physiological and transcriptomic responses at the local (skin) and systemic levels (anterior kidney). In the fourth chapter, I explore louse transcriptome functioning during temperature and salinity perturbations to characterize the molecular stress response and coping strategies of lice, as well as provide stressor context to response genes. In the fifth chapter, I evaluate sensitive Pacific and resistant and sensitive Atlantic lice responses to emamectin benzoate, an important compound for louse control which has recently been evaded by the louse through resistance development in multiple regions worldwide. In the sixth and final chapter, I conclude with a synthesis of what was learned about knowledge gaps discussed above and how to best apply this information by providing some approaches for future research to address remaining challenges. / Graduate / 0369 / 0792 / 0718 / bensutherland7@gmail.com
3

Ecological genomics of nematode responses to different bacterial environments

Coolon, Joseph January 1900 (has links)
Doctor of Philosophy / Department of Biology / Michael A. Herman / Determining the genetic mechanisms involved in organismal response to environmental change is essential for understanding the effects of anthropogenic disturbance. The composition of the bacterial-feeding nematode community is an excellent biological indicator of disturbance, particularly in grassland ecosystems. We have previously shown that grassland soil nematodes are responsive to perturbations in the field including the addition of nitrogen fertilizer. We are interested in how this perturbation affects the microbial community and downstream effects on the next trophic level, the bacterial-feeding nematodes. To determine the effects of disturbance on soil bacterial communities we used massively parallel sequencing and found that chronic nitrogen addition on tallgrass prairie significantly impacts overall bacterial community diversity and the abundance of specific bacterial taxa. Because native soil nematodes lack well developed genomic tools, we employed Caenorhabditis elegans as a model for native soil nematode taxa and used transcriptional profiling to identify 204 candidate genes regulated in response to altered bacterial diets isolated from grassland soils. To biologically validate our results we used mutations that inactivate 21 of the identified genes and showed that most contribute to fitness or lifespan in a given bacterial environment. Although these bacteria may not be natural C. elegans food sources, this study aimed to show how changes in food source, as can occur in environmental disturbance, has large effects on gene expression and those genes whose expression are affected, contribute to fitness. Furthermore, we identified new functions for genes of unknown function as well as previously well-characterized genes, demonstrating the utility of this approach to further describe C. elegans genome. We also investigated the function of previously well-characterized C. elegans defense pathways in our grassland soil bacterial environments and found that some are environment specific. Additionally, we found that cuticular collagen genes are important for lifespan, and appear to function downstream of known defense pathways. Overall, our results suggest that anthropogenic disturbance in grasslands alters the most basal components of the soil food web, bacteria and bacterial-feeding nematodes through the genes they possess and how they are expressed, and resultant bottom-up effects could have profound consequences on ecosystem health and function.
4

Génomique écologique de l'adaptation d'Arabidopsis thaliana dans un environnement hétérogène / Ecological genomics of adaptation of arabidopsis thaliana in a spatially heterogeneous environment

Frachon, Léa 19 July 2017 (has links)
Dans le contexte des changements globaux, un des enjeux majeurs en génomique écologique est d'estimer le potentiel adaptatif des populations naturelles. Répondre à cet enjeu nécessite 3 étapes: identification des agents sélectifs et de leurs échelles spatiales de variation, identification des bases génétiques de l'adaptation et étude de la dynamique adaptative sur une courte échelle de temps. Durant ma thèse, je me suis intéressé à étudier le potentiel adaptatif de la plante modèle Arabidopsis thaliana. A partir de 168 populations naturelles d'A. thaliana caractérisées pour 24 traits phénotypiques et 60 facteurs abiotiques (climat, sol) et biotiques (communautés végétales et microbiote), j'ai pu mettre en évidence que les communautés végétales étaient les principaux agents sélectifs associés à la fitness. Après avoir séquencé le génome de ces 168 populations (~ 4.8 millions de SNPs), j'ai effectué des analyses de type 'association génome-environnement' couplé à des scans génomiques de différenciation génétique spatiale. Ces analyses ont confirmé l'importance de considérer les interactions plante-plante dans l'étude de l'adaptation chez A. thaliana. Afin d'étudier le potentiel adaptatif d'A. thaliana sur le court terme dans le contexte d'un réchauffement climatique, j'ai combiné une étude de résurrection in situ avec une étude de Genome Wide Association mapping, à partir de 195 accessions locales caractérisées pour 29 traits phénotypiques et pour environ 1.9 million de SNPs. J'ai identifié une architecture originale de l'adaptation vers un nouvel optimum phénotypique combinant (i) de rares QTLs avec des degrés de pléiotropie intermédiaires fortement sélectionnés et (ii) de très nombreux QTLs spécifiques d'un micro-habitat et faiblement sélectionnés. A travers les différents projets abordés pendant ma thèse, j'ai pu suggérer qu'une architecture génétique flexible pouvait permettre à A. thaliana de s'adapter rapidement aux changements globaux, tout en maintenant de la diversité génétique au sein des populations naturelles d'A. thaliana. / In the context of global changes, one of the challenges in ecological genomics is to estimate the adaptive potential of natural populations. Three steps are requested to address this challenge: identification of the selective agents and their associated spatial grains, identification of the genetic bases of adaptation and monitoring the adaptive dynamics of natural population over a short time period. Here, I aimed at studying the adaptive potential of the model plant Arabidopsis thaliana. Based on 168 natural populations of A. thaliana characterized for 24 phenotypic traits and 60 abiotic (climate, soil) and biotic (plant communities and microbiota) factors, plant communities were found to be the main selective agents. Based on 4.8 million SNPs, I combined Genome Environment Association analysis with genome scans for signatures of selection. I confirmed the importance to consider plant-plant interactions when studying adaptation in A. thaliana. To monitor the adaptive dynamics of a natural population in the context of global warming, I combined an in situ resurrection study with an approach of GWA mapping based on 195 local accessions characterized for 29 phenotypic traits and 1.9 million SNPs. Adaptive evolutionary changes were largely driven by rare QTLs with intermediate degrees of pleiotropy under strong selection. In addition to these rare pleiotropic QTLs, weak selection was detected for frequent small micro-habitat-specific QTLs that shape single traits. Overall, I suggest that a rapid adaptive phenotypic evolution can be rapidly achieved in A. thaliana, while still maintaining genetic variation in natural populations.

Page generated in 0.1184 seconds