• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 1
  • Tagged with
  • 108
  • 108
  • 24
  • 18
  • 17
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ecology of bitterbrush (Purshia tridentata (Pursh) DC) in the Silver Lake Deer Winter Range, Oregon

Segura-Bustamante, Mariano 28 July 1969 (has links)
Graduation date: 1970
12

The distribution and partitioning of dissolved organic matter off the Oregon Coast : a first look

Hill, Jon K. 20 May 1999 (has links)
The purpose of this thesis is to provide a first look at the spatial and temporal distributions of dissolved organic material (DOM) off the Oregon coast of North America. While this paper is not a comprehensive examination of these distributions, several patterns are identified as promising candidates for continued research. Most of the data presented was acquired during a strong El Nino event. The DOM data is presented as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) and is accompanied by temperature, salinity, nitrate plus nitrite (N+N), ammonium, silicate, chlorophyll, total organic carbon (TOC), particulate organic carbon (POC), total nitrogen (TN), total organic nitrogen (TON), and zooplankton biomass measurements. During July 1997, we examined the distribution of DOM in the surface waters off the Oregon and Southern Washington coasts. Eleven east-west transects were sampled from nearshore waters to 190km offshore. DOC concentrations as high as 180 iM were observed in the Columbia River plume. Patterns in the DOC distribution were also associated with upwelling regions, an offshore coastal jet, and an oligotrophic water mass in the northern portion of our study area. Beginning with the July 1997 study and continuing until July 1998, samples were collected on weekly and seasonal time scales at station NH-05, located 9km offshore from Newport, Oregon. Various problems have limited our seasonal comparisons, but we were able to collect high quality data depicting the changes in organic matter partitioning during a phytoplankton bloom and its decline during a two month period from mid-July through mid-September in 1997. During the bloom, POC increased dramatically, but DOC decreased. Possible explanations for this decrease and for changes in the C/N ratio of the DOM during the bloom are explored. Suggestions for future research are presented in the final chapter. / Graduation date: 2000
13

Butterflies of the H.J. Andrews Experimental Forest : biological inventory and ecological analysis

Ross, Dana N. R. 31 October 2003 (has links)
A biological inventory of the butterflies of the H. J. Andrews Experimental Forest [HJA] in Linn/Lane County, Oregon was conducted during 1994 and 1995. It was the first comprehensive survey of HJA butterflies for the site and serves as a baseline for future butterfly research. A detailed ecological account is provided for each species documented during this and previous studies from the HJA. Patterns of butterfly richness and abundance are addressed both temporally and spatially. Within-year and between year differences in butterfly richness and abundance are explained. Butterfly richness and abundance were compared between forest, clear-cut, and meadow habitats, as well as along the roads within these habitats. Butterfly richness and abundance comparisons were also made between local butterfly hotspots and immediately adjacent areas. Lastly, the HJA butterfly fauna was compared to those of five other Oregon sites to put it into a regional perspective. Seventy-two species were recorded during this two year period and increased the total documented butterfly fauna of the HJA to seventy-nine species. Butterfly species richness was high from June through early August. Butterfly abundance increased gradually over the season and peaked in early August. Each butterfly species displayed one of four patterns of combined relative abundance and distribution: common and widespread, rare and local, common only at low elevations or common only at high elevations. The results of standardized butterfly counts suggested that subalpine meadows were much higher than clear-cuts or forests in butterfly richness and abundance, and that roads served to increase butterfly richness and abundance on a local scale in most cases. Butterfly hotspots on the HJA appear as relatively small areas of high butterfly richness and abundance and have a correspondingly high number of plant species when compared to adjacent areas. With virtually one-half of all butterfly species known for the state of Oregon, the HJA ranks among the most species-rich locations for its size within the state. This diversity originates from several biogeographical regions of origin, as defined within this study. A total of 31 HJA species have a generalized Western North American distribution, but several other biogeographical regions are also well represented. Some butterfly species appear to be at or near their geographical limits on the HJA. The assemblage of HJA butterfly species is virtually inclusive of those from Mary's Peak and McDonald Forest in northwestern Oregon, whereas it differs by 30% or more from the more biogeographically distinct faunas of Crater Lake National Park, Mount Ashland and Steens Mountain. Future butterfly work on the HJA is recommended. Oregon butterfly distribution maps suggest that several additional butterfly species should be found there. More biogeographical analyses combined with long term monitoring of HJA butterflies could help to both predict and document changes in the Pacific Northwest butterfly fauna due to human disturbance and global climate change. / Graduation date: 2004
14

Cumulative effects of land use on salmon habitat in southwest Oregon coastal streams

Frissell, Christopher Andrew, 1960- 30 April 1992 (has links)
As part of a hierarchical approach to classifying watersheds and stream habitats based on geomorphic and geologic criteria, we defined ten classes of fluvial and lacustrine habitats at the scale of valley segments. Valley segments are landscape units which encompass surface waters and the adjacent floodplains and hillslopes with which they interact over time frames of thousands of years. They form a large-scale template that constrains the character of aquatic habitat, controls the effects of disturbances in riparian areas, and mediates responses of streams to upland and upstream events. The regional distribution of valley segment types in southwest Oregon reflects bedrock geology and tectonic history of the landscape. Fluvial segment types differ in stream adjacent landforms, slope erosion processes, floodplain and valley morphology, channel slope, riparian vegetation, streambank texture, gravel bar morphology, and pool-forming features. Studies that do not carefully account for inherent differences between valley segment types could fail to detect critical changes in stream habitat caused by human disturbance. Alluvial valley and alluviated canyon segment types, which have extensive floodplains, low channel slopes, abundant woody debris, and ample gravel beds, are of greatest direct importance for salmon and other native fishes. Virtually all alluvial valleys in the study area have been heavily disturbed by logging, agriculture, and residential development. Alluviated canyon segments located in the few drainage basins where human activity has been limited probably serve as habitat refugia for the last diverse assemblages and productive populations of salmon in the region. Alluviated canyons in extensively-fogged basins exhibit increased abundance of large woody debris, fewer cross-channel debris jams, more extensive bank erosion, reduced pool area and increased riffle area, shallower riffles, and increased surface concentration of fine sediments in pools and other habitats, compared to similar segments in lesser-disturbed basins. These changes in channel morphology and stability appear to be driven by increased sediment load, caused by logging-related landslides and other erosion sources. Field studies in Sixes River basin indicated that abundance and diversity of salmonid fishes declines as maximum stream temperature increases. Changes in summer distribution of juvenile chinook and coho salmon since 1970 are related to changes In water temperature. Although some tributaries have cooled, a decline in rearing distribution in mainstem areas could be caused by long-term loss of channel complexity and associated coolwater refugia. Analysis of fish habitat structures constructed by federal and state agencies indicated that failure rates are high. Recovery of anadromous fish runs in southwest Oregon will require protection of remaining habitat refugia and reduction of sediment yield from disturbed watersheds. / Graduation date: 1992
15

Edaphic controls over succession in former oak savanna, Willamette Valley, Oregon /

Murphy, Meghan Suzanne, January 2008 (has links)
Thesis (M.S.)--University of Oregon, 2008. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 84-87). Also available online.
16

Amphibian communities and physical characteristics of intermittent streams in old-growth and young forest stands in western Oregon

Lee, Yu Man 03 February 1997 (has links)
Intermittent, headwater streams recently have been recognized as important components of forest ecosystems and have been provided increased protection by the Northwest Forest Plan. However, few studies have examined their distribution, dynamics, and ecological roles, such as habitat for wildlife. My goal was to provide additional information on the ecology of intermittent streams in the Pacific Northwest. I examined and compared hydrologic, water quality, and physical characteristics of 16 intermittent streams in old-growth and young forest stands in the central Cascade Range in western Oregon. I documented amphibian communities and habitat associations in these streams during spring and summer. I used comparisons of current habitat conditions and amphibian communities between stand types to gain insight into potential impacts of timber harvesting on these stream systems. Of the streams surveyed in old-growth and young forest stands, relatively few (23%) were designated as intermittent based on my definition which included presence of a definable channel, evidence of annual scour and deposition, and lack of surface flow along at least 90% of the stream length. Intermittent streams in old-growth stands exhibited the following characteristics: (1) annual flow pattern in which streams started to dry in May and June and were mostly dry by July; (2) lengthy annual flow durations (range 6-11 months); (3) cool and stable daily stream temperatures; (4) primarily coarse substrates, such as cobbles and pebbles; (5) streamside vegetation comprised of predominantly coniferous overstories, and plant species associated with uplands or dry site conditions, such as Oregon-grape and salal, as well as riparian areas or wet site site conditions, such as Oregon-grape and salal, as well as riparian areas or wet site conditions, such as red alder, oxalis, red huckleberry, and vine maple (Steinblums et al. 1984, Bilby 1988); and (6) low to moderate densities of large wood, mostly moderately- and well-decayed. Study streams in young forest appeared to dry about one to two months later than the streams in old growth but had similar annual flow durations. They also were characterized by higher daily stream temperatures, similar diel fluctuations, finer substrates, more deciduous overstory and herbaceous understory cover, and lower densities of moderately-decayed large wood. Differences in habitat conditions between stand types may be attributed to timber harvesting as well as discrepancies in physiographic and geological factors, such as elevationgradient, and soil type. Amphibian communities in spring and summer were comprised primarily of the Cascade torrent salamander (Rhyacotriton cascadae), Dunn's salamander (Plethodon dunni), and Pacific giant salamander (Dicamptodon tenebrosus). Amphibian communities in streams in young forest stands exhibited different species composition and seasonal patterns in total density from those in old growth. Cascade torrent salamanders and Dunn's salamanders maintained similar densities and biomass between spring and summer by potentially adopting drought avoidance strategies. Species differed in their use of habitat types and associations with habitat features. In general, amphibian species were positively correlated with percent surface flow, water depth, intermediate-sized substrates and negatively associated with overstory canopy cover, elevation, and wood cover. Results of my study suggest that intermittent streams may warrant protection for their potential effects on downstream habitat and water quality and for their role as habitat for aquatic species, such as amphibians. Streamside vegetation should be maintained along intermittent channels to provide shade protection for water temperature regulation and sources of large woody debris and other allochthonous energy input, to help stabilize slopes, and to minimize erosion and sedimentation. At a minimum, intermittent stream channels should receive protection from physical disturbance during timber harvesting operations. However, since intermittent stream systems are highly variable, management should address individual site conditions and vary accordingly. / Graduation date: 1997
17

Insect community composition and physico-chemical processes in summer-dry streams of Western Oregon

Dieterich, Martin 07 December 1992 (has links)
Seven streams, one of them permanent, were studied in western Oregon, USA. The research was designed to assess the value of summer-dry headwaters for conservation oriented landscape management. Streams were categorized primarily according to exposure (forest versus meadow sites) and secondarily according to flow duration (ephemeral = short-flow versus temporary = long-flow sites). Ephemeral streams have discontinuous flow and last less than three months annually. Temporary streams have continuous flow for more than five months each season. Ephemeral forest streams were highly efficient at filtering road-generated sediment. Uptake lengths for suspended sediment were short (36 m-105 m) at moderately elevated input concentrations. As a result of the filtration mechanism, filtration efficiency is expected to increase as annual flow duration decreases. Injection experiments yielded nitrate uptake rates of almost 1% per m of temporary stream channel. Exchange with subsurface flow was the most important route for nitrate removal from the water column. Biological uptake was insignificant in a light-limited forest stream, whereas a considerable amount of nitrate was retained by the biota a nutrient-limited meadow channel. At least 207 insect species were collected from the summer-dry streams. Species richness recorded from temporary forest streams exceeded that in an adjacent permanent headwater and there was high overlap between the fauna of the permanent and the temporary streams. Species richness in ephemeral channels was only 1/4 to 1/3 of that in long-flow forest streams. Multivariate analysis of community structure revealed flow duration and microhabitat pattern (riffle-pool) as the most important environmental factors determining faunal composition in temporary forest streams. Summer drought conditions at the sample sites also were important. By providing habitat and contributing to water quality in permanent downstream reaches, summer-dry streams have the potential to serve multiple purposes in conservation management. Their value from a conservation perspective is unexpectedly high. Landscape management therefore should be directed toward the preservation and protection of ephemeral and temporary streams. / Graduation date: 1993
18

Effects of variation in ecosystem carryover on biodiversity and community structure of forest floor bryophytes and understory vascular plants : a retrospective approach

Traut, Bibit Halliday 21 November 1994 (has links)
Graduation date: 1995
19

A study of the early life history of the striped bass, M̲o̲ṟo̲ṉe̲ s̲a̲x̲a̲ṯi̲ḻi̲s̲, in Coos River estuary, Oregon

Anderson, Duane Alan January 1985 (has links)
vii, 97 leaves : ill., maps ; 28 cm Notes Typescript Thesis (M.S.)--University of Oregon, 1985 Includes vita and abstract Bibliography: leaves 92-97 Another copy on microfilm is located in Archives
20

A landscape-scale assessment of plant communities, hydrologic processes, and state-and-transition theory in a Western juniper dominated ecosystem

Petersen, Steven Lawrence 14 June 2004 (has links)
Western juniper has rapidly expanded into sagebrush steppe communities in the Intermountain West during the past 120 years. This expansion has occurred across a wide range of soil types and topographic positions. These plant communities, however, are typically treated in current peer-reviewed literature generically. The focus of this research is to investigate watershed level response to Western juniper encroachment at multiple topographic positions. Data collected from plots used to measure vegetation, soil moisture, and infiltration rates show that intercanopy sites within encroached Western juniper communities generally exhibit a significant decrease in intercanopy plant density and cover, decreased infiltration rates, increased water sediment content, and lower soil moisture content. High-resolution remotely sensed imagery and Geographic Information Systems were used with these plot level measurements to characterize and model the landscape-scale response for both biotic and abiotic components of a Western juniper encroached ecosystem. These data and their analyses included an inventory of plant density, plant cover, bare ground, gap distance and cover, a plant community classification of intercanopy patches and juniper canopy cover, soil moisture estimation, solar insulation prediction, slope and aspect. From these data, models were built that accurately predicted shrub density and shrub cover throughout the watershed study area, differentiated by aspect. We propose a new model of process-based plant community dynamics associated with current state-and-transition theory. This model is developed from field measurements and spatially explicit information that characterize the relationship between the matrix mountain big sagebrush plant community and intercanopy plant community patterns occurring within a Western juniper dominated woodland at a landscape scale. Model parameters (states, transitions, and thresholds) are developed based on differences in shrub density and cover, steady-state infiltration rates, water sediment content, and percent bare ground in response to juniper competition and topographic position. Results from both analysis of variance and multivariate hierarchical cluster analysis indicate that states, transitions, and thresholds can be accurately predicted for intercanopy areas occurring within the study area. In theory, this model and the GIS-based layers produced from this research can be used together to predict states, transitions, and thresholds for any location within the extent of the study area. This is a valuable tool for assessing sites at risk and those that have exceeded the ability to self-repair. / Graduation date: 2005

Page generated in 0.0507 seconds