Spelling suggestions: "subject:"cology -- oregon"" "subject:"cology -- pregon""
41 |
The forest and the mainframe : the dynamics of modeling and field study in the Coniferous Forest Biome, 1969-1980Long, Tulley A. 28 July 2005 (has links)
In an initial research proposal of December 1969, the scientists of the Coniferous Forest Biome (CFB), an ecosystem study centered in the Pacific Northwest and part of the larger International Biological Programme (IBP),
expressed optimism that computer simulations and systems modeling could transform empirical knowledge of the carbon, water, and nutrient flows turned into viable forest management practice. The CFB's strategy aimed to use projections of the computer simulations and data from field study to constantly check and direct each other, resulting in a flexible, refined, and accurate understanding of forest ecosystems, as well as a reliable guide to forest management. To what extent did the CFB's research program, centered on a total system model, complete its cycle of field study, modeling, and validation? Despite the innovative strategies of the CFB modelers, ecosystem modeling lost its preeminent status among the goals of the CFB, due to different interpretations of the purpose and philosophy of ecosystem modeling and the practical limitations of administering a large research
program. Instead, small field-based studies during the CFB yielded a number of
ground-breaking discoveries. Although they diverged from the modeling objectives, these areas of fieldwork emerged from questions the forest's functions and cycling processes that the modeling efforts of the CFB required. Focusing on the work of CFB participants from Oregon State University and the USDA Forest Service in the H. J. Andrews Experimental Forest, this thesis addresses the relationship between the marginalization of the modeling objectives and the rising centrality of field-based forest studies in the CFB from 1969 to 1980. Given the ongoing legacy of CFB research at the Andrews Long-Term Ecological Research (LTER) site and the later implications of CFB findings in debates over forest policy and management, this thesis also seeks to evaluate the Coniferous Forest Biome as a whole and discuss the role of modeling and field work within large ecological research endeavors
more generally. / Graduation date: 2006
|
42 |
Hydrogeologic Investigation of the Klamath Marsh, Klamath County, OregonMelady, Jason Michael 01 June 2002 (has links)
Klamath Marsh is a wetland complex that lies in the rain shadow of the Cascade Range in the Williamson River sub-basin of the Klamath Basin. The marsh lies directly east of Crater Lake in an area inundated by pyroclastic-flow and -fall deposits from the Holocene eruptions of Mount Mazama. The physical characteristics of rocks of Pleistocene versus Pliocene age combined with NNW -striking fault systems divide the Williamson River basin into two distinct hydrogeologic regimes. The northwestern regime includes the east slope of the Cascades and consists of at least 150 m of interbedded sand, gravel, and stacks (15 to 45 m) of thin (3-5 m) and vesiculated basalt lava flows. Mean annual precipitation ranges from 150 cm near the crest of the Cascades to 50 cm near Klamath Marsh. Moderate to high yield (100 to 4000 gpm) water wells, springs and flowing wells suggest high permeability and ground water potential. The southeastern regime is underlain by Pliocene pyroclastic flows (∼ 40 m) and lava flows (>30 m). Mean annual precipitation ranges from 70 cm in the highlands to 50 cm in the lowlands. Low-yield (20-100 gpm) water wells and perched unconfined aquifers in Holocene pumice deposits suggest low permeability and low ground water potential in areas underlain by the pyroclastic flows. Volumetric analysis of inflows and outflows in Klamath Marsh for 2000 indicates approximately 86% of inflow is from groundwater and 14% from surface water, with nearly 200 x 10⁶ m³ of water removed by evapotranspiration
|
43 |
Relationships between Avian Diversity and Vegetational Parameters in Forested Patches of the Tualatin Mountains, OregonFugate, Jerry Sexton 27 April 1994 (has links)
The effect of contiguous forested habitat area on local avian diversity and species richness in the Tualatin Mountain area of northwestern Oregon was investigated. Observations of eight forested stands representing seven area values (1, 2, 7, 14, 18, 24 and 40 hectares) were made during the spring and summer of 1991 and 1992. The variables measured were chosen in an attempt to show possible relationships between vegetation factors, spatial patterns and bird communities. Kendall's rank correlation coefficients were used to analyze the data. Avian species richness and diversity were significantly correlated with forest stand (patch) size. The only significant correlation between avian species richness and diversity and vegetation measures was with percent shrub layer cover. It seems likely that avian diversity and richness are increased due to the presence of species that can utilize the interior and edges of forest stands along with species which depend upon true forested interior. When forested patch size drops below a critical area, the patch becomes all edge. Interior species are absent due to increased predation and the inability to compete with interior-edge species. Edge effect may be a contributing factor to variation in diversity of birds. The correlation of percent shrub layer cover with avian measures is accompanied by a correlation of percent shrub layer cover with distance from edge. This suggests further investigation is required to assess this relationship. Studies conducted in the northeastern and north central United States have shown a similar relationship between bird communities and forest patch size.
|
44 |
Biology and chemistry of a meadow-to-forest transition in the Central Oregon CascadesHeichen, Rachel S. 18 April 2002 (has links)
In this study, biological and chemical characteristics were determined for
two high-elevation meadow-to-forest transitions located in the Central Oregon
Cascades. The chloroform fumigation incubation method (CFIM) was used to
determine microbial biomass C(MBC) and the N flush due to fumigation (NF), and
meadow values were compared to forest values for each. Meadow and forest MBC
values were also compared for estimates of MBC determined with microscopy and
these values were compared to CFIM estimates. Net N mineralization and C
mineralization were determined for an 85-d incubation period and used as a
measure of labile C and N. Microbial biomass C and NF were then compared to
these labile pools in order to investigate the relationship between the amount of
each nutrient stored in biomass and the magnitude of the respective labile nutrient
pool for each. Long-term and short-term net N mineralization rates and C/N ratios
were also compared for meadow and forest soils, and the relationship between
these two characteristics was examined.
In general, microbial biomass estimates made with the CFIM method did not
show any significant differences between meadow and forest soils. Mean MBC for
both sites as determined by CFIM was estimated to be 369 and 406 μg C g⁻¹ soil in
meadow and forest soils, respectively. Mean NF was estimated to be 37 and 56 μg
N g⁻¹ soil in meadow and forest soils, respectively. MBC estimates made using
microscopy showed biomass C to be greater in the forest than in the meadow.
Mean MBC as determined by microscopy was estimated to be 529 and 1846 μg C
g⁻¹ soil in meadow and forest soils, respectively. The NF measured as a percentage
of the net N mineralized over 85 d was significantly greater in the forest than in the
meadow soils, but was a substantial percentage in both. The means of these values
were 30 and 166% in meadow and forest soils, respectively. This led to the
conclusion that biomass N may be a very important pool of stored labile N in this
ecosystem. Net N mineralization rates were almost always greater in the meadow
than in the forest soils. Net N mineralization for the 10-d incubations averaged
21 μg N g⁻¹ soil in the meadow and 8 μg N g⁻¹ soil in the forest Rates for long-term
N mineralization averaged 126 μg N g⁻¹ soil in the meadow and 52 μg N g⁻¹
soil in the forest. Net N mineralization rates were correlated with C/N ratios for
both short-term and long-term incubations. / Graduation date: 2002
|
45 |
Evaluation of bacterial community indicators of stream sanitary and ecological conditionBracken, Caragwen L. 08 September 2003 (has links)
The focus of this research was to develop bacterial community indicators of
stream sanitary and ecological condition. The first study compared substrate utilization
patterns between centrifuged and uncentrifuged split samples. We found a shift in the
relative proportion of each group of bacteria following centrifugation, with a marked
increased in the fecal coliform group and relatively fewer heterotrophic and total coliform
bacteria. Centrifuged samples consistently responded faster and oxidized more substrate
than did their uncentrifuged counterparts. Substrate utilization patterns of centrifuged
sub-samples from 19 sites showed better separation between Willamette Valley and
Cascade ecoregions than did the uncentrifuged sub-samples in ordination space. We
recommend developing microtiter plates with substrates specific types of environmental
stress. The second study determined the minimum volume of water needed and the
maximum time and temperature that bacteriological water samples captured on a
membrane filter can be held in guanidine isothiocyanate buffer (GITC) prior to DNA
extraction for community fingerprint analysis. We found 100 ml water samples yielded
more information than the 50 ml or the 250 ml water samples and observed a marked
decrease in information for samples that were held at room temperature for more than 24
hours. We concluded that 100 ml samples were optimal for bacterial community DNA
fingerprint analysis. Furthermore, we recommended transporting filtered water samples
held in GITC on ice and keeping the samples frozen until DNA is extracted for further
analysis. The third study addressed questions of sampling error and response variability
of two PCR-based indicators, bacterial community-level Terminal-Restriction Fragment
Length Polymorphisms and Bacteroidetes ruminant and human specific fecal source
tracking markers. We found the T-RPLP and Bacteroidetes markers to show very little
sampling error, and suggested collecting a single 1-liter water sample. A high turbidity
scenario resulting in higher fecal pollution and lower bacterial species richness explained
why decreased TRF richness was strongly associated with high fecal coliform density,
turbidity, and human Bacteroidetes detection. We propose that in times of increased
turbidity, a disturbance in the bacterial community occurs, reducing bacterial richness
and increasing a few types of stress-resistant fecal bacteria. / Graduation date: 2004
|
46 |
Sea urchin-kelp forest communities in marine reserves and areas of exploitation : community interactions, populations, and metapopulation analysesMoctezuma, Gabriela Monta��o 20 December 2001 (has links)
Marine ecosystems can be exposed to natural and anthropogenic disturbances
that can lead to ecological failures. Marine reserves have been lately suggested to
protect marine populations and communities that have been affected by habitat
destruction and harvest. This research evaluates the potential role of two marine
reserves established in Oregon in 1967 (Whale Cove) and 1993 (Gregory Point). The
red sea urchin (Strongylocentrotus franciscanus) was selected as indicator of
population recovery since it is the only species that is commercially harvested.
Changes in density, biomass, average size, size structure, growth and mortality rates
were evaluated through time to assess population recovery. These parameters were
also compared between reserves and adjacent exploited areas to evaluate the effect of
exploitation. Results from Whale Cove (old reserve) indicate that the population in
this area is fully recovered. On the contrary, the population in Gregory Point (new
reserve) showed signs of recovery after six years of being protected. The importance
of red urchins as source populations to provide larvae to adjacent areas was explored
by the analysis of drifter's trajectories. Both reserves might be connected in a network
where larvae produced in Whale Cove will provide recruits to Gregory Point and
adjacent exploited areas, as well as populations in northern California. Gregory Point
releases larvae that become recruits for Whale Cove only when spawning takes place
in winter, otherwise larvae travel to central California. No clear trends were found in
growth and mortality rates between reserves and non-reserves; differences were more
related with food availability, competitors, and age specific mortality.
We applied qualitative simulations to characterize and differentiate the
community network inside reserves and exploited areas. Results suggest that
communities from a particular site can be represented by a set of alternative models
with consistent species interactions. Differences in predator-prey interactions as well
as non-predatory relationships (interference competition, mutualism, amensalism)
were found among sites. Each set of models represents a hypothesis of community
organization that agreed with natural history information. Alternative models suggest
that kelp forest communities are dynamic and can shift from one network
configuration to another providing a buffer against a variable environment. / Graduation date: 2002
|
47 |
Evaluating microbial indicators of environmental condition in Oregon riversPennington, Alan Travis 29 July 1999 (has links)
Traditional public health bacterial indicators of water quality and the
Biolog�� system were evaluated to compare their response to other
indicators of stream condition with the state of Oregon and between ecoregions (Coast Range, Willamette Valley, Cascades, and Eastern Oregon). Forty-three randomly selected Oregon rivers were sampled during the summer low flow period in 1997 and 1998. Testing included
heterotrophic plate counts (HPC), total coliforms, fecal coliforms, E. coli, and Biolog�� GN plates. Statewide, HPC correlated strongly with physical habitat and chemistry indicators while fecal coliforms and E. coli were highly correlated only with the river chemistry indicators. Total coliform bacteria did not correlate with either of the above environmental indicators. Dividing the sites by ecoregion, Eastern Oregon was characterized by high HPC, fecal coliforms, E. coli, nutrient loads, and
indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range reflected statewide results and the Willamette Valley presented no consistent indicator pattern. Attempts to separate ecoregions with the Biolog system were not successful nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research has shown that traditional public health microbial indicators may, however, be useful in measuring the effects of anthropogenic stress over large spatial scales. / Graduation date: 2000
|
48 |
Preliminary investigation of microbial indicators in the assessment of Oregon streamsCampbell, Heidi M. K. 29 September 1998 (has links)
The Environmental Monitoring and Assessment Program (EMAP) site selection
protocol was used to generate a random sample of streams throughout the state of
Oregon. One hundred and forty-six selected streams were sampled during the summer,
low-flow period of 1997. Traditional microbial public health indicators, including
heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and E. coli,
were enumerated using the membrane filtration technique. Nearly 17% (3.4-23.6%,
95% C.I.) of streams exceeded the current state of Oregon standard for water-contact
recreation. Levels of bacteria were also shown to differ significantly by ecoregion. The
Cascades ecoregion had low levels of all types of bacteria. The Willamette Valley,
Columbia Plateau and Snake River Basin had high levels of one or more groups of
bacteria measured. Twenty-six sites were resampled and FC and E. coli estimates were
not significantly different for the different sampling dates.
Biolog GN plates were used to provide a measure of the functional diversity of
microbial communities for the same streams as above. Two groups were formed based
on inoculum density and Biolog GN plates were analyzed using principal component
analysis (PCA). The first few principal components explained nearly half of the variation of the data in both groups. Principal components were correlated with the average carbon source utilization, levels of coliform bacteria, and ecoregions. These results indicate that patterns produced by Biolog GN plates may be useful in the assessment of ecological condition of freshwater streams. Subsequent publications will explore the relationships between the pattern of substrate utilization of Biolog GN plates with other indicators of ecological function. / Graduation date: 1999
|
49 |
Influences of riparian canopy on aquatic communities in high desert streams of eastern OregonTait, Cynthia K. 12 September 1997 (has links)
Because riparian canopy controls most energy inputs to stream
ecosystems, it directly affects the structure of aquatic food webs and the
ecological processes that govern interactions among trophic levels. This
study addresses the interdependence among riparian canopy, benthic
community structure, and the carrying capacity of high desert streams for
salmonid fishes. In streams in the lower John Day River Basin in eastern
Oregon, algal, invertebrate, and fish communities were compared in reaches
with varying densities of riparian canopy. Water temperatures varied with
the density and upstream extent of canopy. Densely canopied sites were
cool, while sites with high irradiances had temperatures exceeding the upper
lethal limit for salmonids. Periphyton and grazer biomasses were greater in
well-lighted sites, but 90% of grazer biomass consisted of Dicosmoecus
gilvipes, a large caddisfly inedible by juvenile trout. Warmer water
increased metabolic demands for salmonids, while the overwhelming
dominance of Dicosmoecus in open sites shifted energy flow away from
trout and shrunk their food base. High water temperatures, however,
provided suitable habitat for many warmwater fishes which would otherwise
not enter tributaries of this size. At higher elevation study sites in Camp
Creek, light levels were higher and less variable than at the lower sites.
Periphyton and invertebrate abundances were not correlated with irradiance.
Rather, periphyton was maintained at low levels by grazers, particularly
Dicosmoecus and snails. Manipulations of fish densities in enclosures
showed that trout and dace had no negative impacts on numbers of
invertebrate prey, and that grazers played a larger role in regulating lower
trophic levels than did fish. Dicosmoecus acted as a keystone species in
the benthic food web of Camp Creek by simultaneously influencing the
trophic level both below and above its own. When irradiance was
experimentally reduced under artificial canopies, periphyton standing crops
were not different from those in open control pools after 4 wks. However,
grazers were more abundant in open pools. The cropping of periphyton to
uniform levels in both sunlight and shade indicated that mobile grazers
targeted sites of varying productivities. Comparisons between benthic
communities in Camp Creek and in a densely canopied reference stream
suggested that benthic community structure shifted to accommodate
changes in energy resources that occur when canopy density is altered. / Graduation date: 1998
|
50 |
Do settling mussels (Mytilus spp.) prefer macroalgae over artificial substrates? : a test of collector preference along the Oregon CoastHowieson, John 03 April 2006 (has links)
Graduation date: 2006 / This study investigated whether a device commonly used to measure settlement of mussel larvae for ecological studies, the Tuffy™, functions uniformly whether placed in a bed of filamentous algae or on bare rock. During the summers of 2004 and 2005, the number of mussel larvae settling on Tuffys in patches of the filamentous algae Endocladia muricata and Neorhodomela larix, known to be natural substrata for settlement of mussels, was shown to be the same as on Tuffys on adjacent patches of bare rock. The data provide no evidence that adjacent filamentous algae affects settlement to Tuffys and support the utility of this technique for measuring the intensity of larval settlement.
|
Page generated in 0.0407 seconds