Spelling suggestions: "subject:"dffect off temperature ono"" "subject:"dffect off temperature onn""
171 |
Atividade cambial em ramos de Kielmeyera grandiflora (WAWRA) saddi (Callophylaceae) ocorrentes no cerrado paulista /Parmeggiani, Rafaela Prosdocini, 1986. January 2016 (has links)
Orientador: Carmen Regina Marcati / Coorientador: Fabio Bosio / Banca: Elizabeth Orika Ono / Banca: Clivia Carolina Forilo Possobom / Resumo:No cerrado, as estações são bem demarcadas pela sazonalidade pluvial, portanto, espera-se que haja uma sazonalidade na atividade do câmbio vascular. Kielmeyera grandiflora é considerada uma espécie modelo para estudos de atividade cambial em ramos, pois possui módulos de crescimento bem demarcados, formados por cicatrizes da gema terminal. Nosso objetivo foi de entender qual a relação entre a atividade cambial de Kielmeyera grandiflora (Wawra) Saddi (Calophyllaceae), os fatores ambientais e a fenologia e responder se a atividade cambial varia entre três módulos de crescimentos consecutivos. A área de estudo é um fragmento de cerrado em regeneração no município de Botucatu, estado de São Paulo, Brasil (S 22º53'11.0', W 48º29'17.3'). Foram amostrados mensalmente os três últimos módulos de crescimento dos ramos de três indivíduos durante o período de fevereiro de 2012 a fevereiro de 2013. No mesmo período, a fenologia (brotação, folhas novas, folhas adultas, folhas senescentes e queda foliar) foram avaliadas. O material foi fixado em CRAF III para conservação do conteúdo celular. As amostras foram desidratadas em série alcoólica e incluídas em resina metacrilato para posterior corte em micrótomo rotativo. As análises foram feitas em fotomicroscópio de luz. Utilizamos Modelo Generalizado Linear Misto (GLMM) com erro Binomial para a variável resposta presença/ausência da atividade cambial e erro de Poisson para a variável resposta de contagem de paredes recém formadas. O início da atividade cambial, a brotação e o desenvolvimento de folhas novas ocorreram durante o mês de agosto no período seco. O período de atividade cambial sobrepôs-se à estação chuvosa, temperaturas elevadas e comprimento do dia entre 12 e 13,6 h. O câmbio vascular entrou em dormência em maio, mês que ainda chovia, contudo a temperatura e o comprimento do dia passavam ... / Abstract: In the cerrado, the seasons are well marked by rain seasonality; therefore, there is a seasonality in the vascular cambium activity. Kielmeyera grandiflora is considered a model for branch cambial activity studies because it has well marked growth modules formed by terminal bud scars. Our goal was to understand what the relationship between cambial activity of Kielmeyera grandiflora (Wawra) Saddi (Calophyllaceae), environmental factors and the phenology and answear wheter cambial activity varies between three consecutive sections of internodal growth. The study area is a cerrado fragment in regeneration in the city of Botucatu, São Paulo State, Brazil (22° 53 ' S 11.0 ', W 48° 29 ' 17.3 '). Were sampled on a monthly basis the last three modules of growth of branches of three individuals during the period between February 2012 to February 2013. The material was fixed in CRAF III for preservation of cell content. The samples were dehydrated in alcohol series and included in historesin for further cut in rotary microtome. Analyses were made on light microscope. We used Generalized Linear Mixed Model (GLMM) with Binomial error for the variable reply presence/absence of cambial activity and Poisson error for the variable count response of newly formed walls. The beginning of cambial activity, the sprouting and the development of new leaves occurred during the month of August in the dry period. The period of cambial activity overlapped the rainy season, high temperatures and day length between 12 and 13, 6 h. The vascular cambium dormancy was observed in May, a raining month; however, temperature and day length was decreasing. The variation of cambial activity between the internodal growth sections was representative just in reactivation period, showing that the younger internodal section, closest to the sources of auxin, has produced in the whole study period a larger number of new cells that ... / Mestre
|
172 |
Fire Effects on Suspension Bridge Main Cables: Methods for Determining Both Temperature and Strain Distributions Within an Exposed CableSloane, Matthew Jake Deeble January 2017 (has links)
Fire resistance design and analysis is an under-studied and under-codified area of bridge engineering. With the lessening of conservatism in bridge design, the aging or our bridge infrastructure, and the increase in the ground transport of highly-flammable and -combustible materials, it is essential that the bridge engineering community better understand and incorporate methods for modeling the effects of fire on bridges. Typical fire resistance analysis looks at the response of individual structural components. Analysis for the component of a bridge is nowhere more important than for that of the main cables of suspension bridges. As such, we will survey and introduce the necessary analysis techniques to provide the bridge engineering community with the knowledge and tools to understand fire modeling and both rapidly and accurately assess their effects on suspension bridge main cables.
The work of this dissertation is twofold. In the first portion, we address proper fire modeling techniques for bridge conditions and apply them in a sequential thermal-mechanical analysis of a three-dimensional model main cable with thermally-dependent material and mechanical properties. Although fire modeling has been addressed in a variety of scenarios, including extensive studies for building design and analysis as well as tunnel design and analysis, the types of fires, fire geometries, and air conditions associated with bridge fires vary drastically. Our work identifies the time to failure for our particular main cable example and subsequently compares both the temperature and strain distributions for temperature-dependent and temperature-independent models.
Although the three-dimensional analysis is complete, we hope to emulate and expand on the work done in the building fire engineering community and bring to the literature methods to produce significant two-dimensional temperature distributions for when a main cable component is either partially or fully-exposed to fire. As such, the main fire modeling analyses mentioned in the previous paragraph lay the groundwork for our pursuit of closed-form analytical solutions necessary to rapidly and accurately assess the time-dependent temperature distribution within a cable cross-section exposed to fire. These solutions are formed with different approaches depending on the fire scenario in question. They include a separation of variables (eigenfunction) approach, sinusoidal transforms, Laplace transforms, Green's function solutions, and a semi-analytical hybrid method. We validate each of the approaches numerically using three different fire models.
|
173 |
Avaliação de danos e efeito de variáveis ambientais na mancha de alternaria (Alternaria helianthi) em Girassol. / Damage assessment and effect of environmental variables on alternaria leaf spot (Alternaria helianthi) in sunflower.Leite, Regina Maria Villas Bôas de Campos 27 August 2002 (has links)
O desenvolvimento e implementação de uma estratégia de manejo integrado de doenças na cultura do girassol (Helianthus annuus) requer informações precisas e acuradas sobre os danos causados pela mancha de Alternaria, causada por Alternaria helianthi. Os objetivos desta tese foram: elaborar e validar uma escala diagramática para avaliação da mancha de Alternaria; determinar a influência da temperatura (15-32,5 °C) e da duração do período de molhamento foliar (2-24 h) nos componentes monocíclicos da doença; comparar a relação de variáveis relacionadas à doença ou à área foliar com os componentes de produção de girassol, em experimentos de campo. A escala diagramática, com níveis de severidade de: 0,03; 0,2; 0,6; 3; 7; 12; 25; 40 e 66% da área foliar lesionada, foi validada por três avaliadores experientes. A escala permitiu que se fizesse uma avaliação acurada e precisa, quando se utilizou folhas desenhadas ou folhas verdes com sintomas. O erro absoluto ao estimar a severidade foi menor que 13% e a reprodutibilidade das avaliações foi alta. Em ambiente controlado, verificou-se que a densidade relativa de lesões e a severidade foram influenciadas pela temperatura e pela duração do período de molhamento foliar. A doença foi mais severa na temperatura de 25 °C. A temperatura mínima para desenvolvimento da doença foi de 13,0 °C e a máxima foi de 35,8 °C. A doença aumentou com o aumento da duração do período de molhamento foliar. A temperatura mínima estimada para a taxa de crescimento micelial foi de 5,5 °C e a máxima foi de 32,9 °C. A temperatura mínima estimada para germinação de conídios foi de 7,9 °C e a máxima foi de 40,0 °C. Experimentos foram conduzidos nas safras de 1997/1998, 1998/1999 e 1999/2000 para avaliar a relação entre severidade da mancha de Alternaria, área sob a curva de progresso da doença (AUDPC), índice de área foliar sadia em determinado dia (HLAI), duração da área foliar sadia (HAD), radiação interceptada pela área foliar sadia em determinado dia (HRI), absorção da área foliar sadia (HAA) e componentes de produção de girassol, semeado em quatro épocas. A AUDPC teve relação com rendimento de aquênios, com ajuste do modelo exponencial negativo em duas safras. A relação rendimento x HAD foi linear para os três experimentos. Para as variáveis integrais estudadas, a melhor relação com rendimento foi verificada para HAA, com ajuste do modelo exponencial. A taxa da relação severidade x rendimento tendeu a se estabilizar a partir da fase de desenvolvimento R1. A taxa da relação linear entre HLAI e rendimento estabilizou-se entre as fases R1 a R6. A taxa da regressão entre HRI e rendimento foi bastante variável e não mostrou tendência de estabilização. Verificou-se que plantas que apresentaram severidade maior que 10% na fase de desenvolvimento R3 produziram rendimentos inferiores a 500 kg/ha, para as três safras, independentemente da época de semeadura, o que pode ser utilizado como um limiar de dano. A severidade pode ser usada como uma variável independente para um sistema de manejo da mancha de Alternaria em girassol. / The development and implementation of integrated disease-management system on sunflower (Helianthus annuus) require precise and accurate information on the damage caused by Alternaria leaf spot (Alternaria helianthi). The objectives of this thesis were: to develop and to validate a diagrammatic scale for Alternaria leaf spot; to determine the influence of temperature (15-32.5 °C) and leaf wetness duration (2-24 h) on the monocycle of the disease; and to compare the relationship between variables related to Alternaria leaf spot or to leaf area and yield, in field experiments. The diagrammatic scale with levels representing: 0.03; 0.2; 0.6; 3; 7; 12; 25; 40; and 66% of diseased leaf area was validated by three experienced raters. The scale permitted assessments to be accurate and precise, when drawn or detached leaves were used. The absolute error in estimating disease severity was lower than 13% and the reproduc ibility of assessments was high. In controlled environment studies, relative lesion density and severity were influenced by temperature and leaf wetness duration. The disease was more severe in the temperature of 25 °C. The minimum temperature for disease development was 13.0 °C and the maximum was 35.8 °C. The disease increased with increasing periods of leaf wetness. The estimated minimum temperature for mycelial growth rate was 5.5 °C and the maximum was 32.9 °C. The estimated minimum temperature for conidia germination was 7.9 °C and the maximum was 40.0 °C. Three field experiments were carried out in 1997/1998, 1998/1999 and 1999/2000 to investigate the relationship between severity of Alternaria leaf spot, area under disease progress curve (AUDPC), healthy leaf area index at any given day (HLAI), healthy leaf area duration (HAD), radiation intercepted by healthy leaf area at any given day (HRI), total healthy leaf area absorption (HAA), and yield components of sunflower, sowed in four dates. AUDPC showed relationship with yield in two years, following the negative exponential model. The yield x HAD relationship was linear for each of three trials. Among the integral variables analyzed, the yield x HAA relationship was the best one, fitted by the exponential model. The slope of the yield-severity relationship was stable from R1 growth stage. The yield-HLAI relationship was stable between R1 and R6. The yield-HRI relationship was variable and not stable. The yield-severity relationship in R3 growth stage proved that plants with severity higher than 10% had yield lower than 500 kg/ha, despite the sowing date, which can be used as a damage threshold. Severity can be used as an independent variable to a system of sunflower Alternaria leaf spot management.
|
174 |
Interactions between Vegetation and Water Cycle In the Context of Rising Atmospheric Carbon Dioxide Concentration: Processes and Impacts on Extreme TemperatureLemordant, Léo January 2019 (has links)
Predicting how increasing atmospheric carbon dioxide concentration will affect the hydrologic cycle is of utmost importance for water resource management, ecological systems and for human life and activities. A typical perspective is that the water cycle will mostly be altered by atmospheric effects of climate change, precipitation and radiation, and that the land surface will adjust accordingly. Terrestrial processes can however feedback significantly on the hydrologic changes themselves. Vegetation is indeed at the center of the carbon, water and energy nexus.
This work investigates the processes, the timing and the geography of these feedbacks. Using Earth System Models simulations from the Coupled Model Intercomparison Project, Phase 5 (CMIP5), with decoupled surface (vegetation physiology) and atmospheric (radiative) responses to increased atmospheric carbon dioxide concentration, we first evaluate the individual contribution of precipitation, radiation and physiological forcings for several key hydrological variables. Over the largest fraction of the globe the physiological response indeed not only impacts, but also dominates the change in the continental hydrologic cycle compared to either radiative or precipitation changes due to increased atmospheric carbon dioxide concentration. It is however complicated to draw any conclusion for the soil moisture as it exhibits a particularly nonlinear response.
The physiological feedbacks are especially important for extreme temperature events. The 2003 European heat wave is an interesting and crucial case study, as extreme heat waves are anticipated to become more frequent and more severe with increasing atmospheric carbon dioxide concentration. The soil moisture and land-atmosphere feedbacks were responsible for the severity of this episode unique for this region. Instead of focusing on statistical change, we use the framework of Regional Climate Modeling to simulate this specific event under higher levels of surface atmospheric carbon dioxide concentration and to assess how this heat wave could be altered by land-atmosphere interactions in the future. Increased atmospheric carbon dioxide concentration modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the heat wave impact. Land-atmosphere interactions and carbon dioxide fertilization together synergistically contribute to increased summer transpiration if rainfall does not change. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise during extreme heat periods.
This soil moisture feedback, which is mediated and enabled by the vegetation on a seasonal scale is a European example of the impacts the vegetation could have in an atmosphere enriched in carbon dioxide. We again use Earth System Models to systematically and statistically investigate the influence of the vegetation feedbacks on the global and regional changes of extreme temperatures. Physiological effects typically contribute to the increase of the annual daily maximum temperature with increasing atmospheric carbon dioxide concentration, accounting for around 15% of the full trend by the end of the XXIth Century. Except in Northern latitudes, the annual daily maximum temperature increases at a faster pace than the mean temperature, which is reinforced by vegetation feedbacks in Europe but reduced in North America.
This work highlights the key role of vegetation in influencing future terrestrial hydrologic responses. Accurate representation of the response to higher atmospheric carbon dioxide concentration levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climates in various regions of the globe.
|
175 |
Silver Tantalate: a High Temperature Tribological InvestigationStone, D’Arcy S. 12 1900 (has links)
As technology advances, mechanical and electrical systems are subjugated to intense temperature fluctuations through their service life. Designing coatings that operate in extreme temperatures is, therefore, a continuing challenge within the tribology community. Silver tantalate was chosen for investigation at the atomic level, the physical and chemical properties that influence the thermal, mechanical, and tribological behavior for moving assemblies in high temperature tribological applications. By correlating behavior of internal physical processes to the macro tribological behavior, the tribological community will potentially gain improved predicative performance of solid lubricants in future investigations. Three different approaches were explored for the creation of such materials on Inconel substrates: (1) powders produced using a solid state which were burnished on the surface; (2) monolithic silver tantalate thin films deposited by magnetron sputtering; and, (3) an adaptive tantalum nitride/silver nanocomposite sputter-deposited coating that forms a lubricious silver tantalate oxide on its surface when operated at elevated temperatures. Dry sliding wear tests of the coatings against Si3N4 counterfaces revealed friction coefficients in the 0.06 - 0.15 range at T ~ 750 °C. Reduced friction coefficients were found in nanocomposite materials that contained primarily a AgTaO3 phase with a small amount of segregated Ag phase, as suggested by structural characterization using X-ray diffraction. The presence of nanoparticles of segregated Ag in the thin films further enhanced the performance of these materials by increasing their toughness. Additional characterization of the AgTaO3 films at 750 °C under normal loads of 1, 2, 5, or 10 N revealed that the friction monotonically increased as the load was increased. These results were complemented by molecular dynamics simulations, which confirmed the increase of friction with load. Further, the simulations support the hypothesis that this trend can be explained in terms of decreased presence of Ag clusters near the sliding surface and the associated decreased porosity. The results suggest that the relative amount of Ag in a TaN or Ta2O5 mastrix may be used to tune film performance for a given application.
|
176 |
The Effects of Hypoxia and Temperature on Developing Embryos of the Annual Killifish Austrofundulus limnaeusAnderson, Skye N. 01 January 2012 (has links)
Little is known about the physiology or biochemistry of hypoxia (reduced levels of oxygen) tolerance during development in vertebrate embryos. In most species, relatively brief bouts of severe hypoxia are lethal or teratogenic. An exception to such hypoxia intolerance is the annual killifish Austrofundulus limnaeus, in which populations persist in hypoxic environments. This species inhabits seasonal ponds in Venezuela, surviving through the dry season in the form of diapausing embryos. Embedded in the pond sediment, embryos of A. limnaeus are routinely exposed to hypoxia and anoxia (lack of oxygen) as part of their normal development. Here, we exposed embryos to various levels of PO2 (21.2, 15.6, 10.8, 8.4, 6.1, 3.6, and 2.2 kPa) at two different temperatures (25°C and 30°C) to study the effects on developmental rate and heart rate. We also measured enzyme activity and quantified DNA content of individual embryos to compare differences among the varying levels of hypoxia and temperature. Hypoxia caused a significant decline in developmental rate and caused a stage-specific decline in heart rate. Higher temperature caused an increase in the developmental rate for those embryos incubated at PO2 of 6.1 kPa and greater. Temperature had a negative effect by hindering development below a PO2 of 6.1 kPa. Total embryonic DNA content was reduced at low partial pressures (15.6, 10.8, 8.4, 6.1, 3.6, and 2.2 kPa) of oxygen. Citrate synthase, lactate dehydrogenase, and phosphoenolpyruvate carboxykinase were all down-regulated indicating a complete lack of enzymatic metabolic compensation to combat reduced oxygen levels.
|
177 |
The Effect of Temperature on Phenotypes of the Invasive European Green Crab: Physiologic Mechanisms that Facilitate Invasion SuccessKelley, Amanda 29 May 2013 (has links)
Invasion physiology is an emerging field that endeavors to understand the influence of physiological traits on the establishment of non-native species in novel environments. The invasive European green crab,Carcinus maenas, is one of the world's most successful aquatic invaders, and is currently distributed across temperate marine ecosystems globally. The work presented here explored the thermal physiology of this species, and has highlighted several physiological traits that have likely influenced establishment success.
Intraspecific comparisons of crabs sampled from the northern and southern edges of their recipient, or invaded range on the west coast of North America have identified both organismal and cellular physiological difference with respect to upper and lower thermal tolerances. Crabs sampled from British Columbia, Canada (BC) had a significantly lower mean upper thermal tolerance threshold and heat shock protein synthesis, Hsp70, compared to their warm acclimated conspecifics sampled from California (CA). These differential physiologic responses may be rooted in the disparate natural thermal habitats that each population occupies within their respective environments.
The ability of this species to extend its current range limits was also investigated. Range expansion to the south has been limited, and is likely restricted by this species lack of adaptation to warmer temperatures. Because range expansion has been chiefly northward, characterizing this species' response to cold stress can identify whether colder temperatures poleward may limit further range expansion. Cold tolerance capacity was determined in the laboratory, and crabs sampled from Vancouver Island, British Columbia were able to withstand the over-wintering thermal regime that occurs in Sitka, Alaska, a site that is currently beyond the range limits of this species. Furthermore, intraspecific assessments found that the cold acclimated BC population exposed to cold shock significantly down regulated protein levels of cyclin D1, cell cycle modulator.
Distinct differences in carapace width (CW) were detected along the thermal gradient present in the green crabs' range. This variation in body size was utilized to the test the temperature size rule hypothesis for ectotherms. Simply stated, the temperature size rule is the tendency for ectotherms to develop slower but mature to a larger body sizes at cooler temperatures. The results supported this hypothesis as crabs sampled from the warm portion of the range were found to be smaller than crabs sampled from the colder portion of the range. This pattern was detected along the native range as well. Differences in body size have the potential to influence the scope of invasion; larger individuals are generally more fecund and longer lived, which can increase both the intensity and frequency of larval dispersal that could further propel range expansion.
The physiologic properties that the green crab possesses which may influence invasion success were examined using peer-reviewed literature with the aim of determining if these physiological traits confer invasion success across taxa. This analysis tested four hypotheses: 1) Broad geographic temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold when comparing invasive and native species. 2) The upper thermal extreme experienced in nature is correlated with upper thermal tolerance threshold. 3) Protein chaperone expression, a cellular mechanism underlying thermal tolerance threshold, is greater in invasive organisms than in native ones. 4) Acclimation to higher temperatures can promote a greater range of thermal tolerance for invasives compared to natives. These preliminary results generally support the four stated hypotheses, and provide a solid foundation for further studies to explore and identify physiologic traits that facilitate invasion success.
Overall, these studies investigated the thermal physiology ofCarcinus maenasfrom an invasive metapopulation and have brought about significant advances in our understanding of what physiologic traits correlate to invasion success in this species. In addition, the data presented here can aid resource managers in identifying habitats, based on thermal tolerance measurements that fit the criteria for invasion. Understanding how invasive organisms vary with respect to thermal tolerance can aid our understanding the patterns and processes of species invasions.
|
178 |
The Interactive Effect of Temperature and Salinity in the Nile Tilapia (<i>Oreochromis niloticus</i>)Palmer, Rachel Marie 16 April 2019 (has links)
Frequent measures that aim to identify the tolerance of an organism to various environmental conditions rely on the mortality of said organism. However, the effects of sub-lethal stress can be just as important to consider as they may give rise to how an organism may live in such an environment (growth, reproduction, etc.). Coping with changes in environmental conditions can have a high energy cost. Even starting a cellular stress response alone has proven to be costly. It is therefore reasonable that organisms in stressful situations will dedicate energy sources to survival mechanisms, and downregulate non-necessary activities like growth, and reproduction.
As a tropical freshwater species, Nile Tilapia are subject to both Winter Stress Syndrome and saltwater intrusion as global climate change progresses, making them an ideal model organism. In order to test the physiological limits of this species, we exposed Nile Tilapia to a variety of treatments (two temperatures: 21°C & 14°C, three salinities: 0ppt, 16ppt, 34ppt) for one hour. By manipulating both temperature and salinity simultaneously the author hopes to shed light on the future of this species as global climate change progresses.
Cell cycle arrest can occur at cellular checkpoints such as the ones located at G1 or G2/M. Monitoring the DNA replication process is crucial to cellular activities, and disruptions such a cell size issues or DNA damage can cause this process to stop indicating the presence of sub-lethal stress. There were no significant changes in the proportions of cells in G1, S, or G2 due to an increase of salinity in warm water. In cold water, there was a steady decrease of the percentage of cells in G1 as salinity increased suggesting cell cycle arrest is occurring at a different checkpoint. A significant increase in the number of cells in G2 in response to cold temperature was found, however, this effect was not made greater by the addition of salinity. Increasing number of cells in G2/M suggests that there is cell cycle arrest occurring at the G2/M checkpoint.
The concentrations of three proteins involved in the regulation and arrest of the cell cycle were measured in gill tissue by dot blotting. Western blotting was performed to ensure the specificity of the protein antibodies. Three proteins of interest were chosen due to their roles in regulating cell cycle proliferation (Proliferating Cell Nuclear Antigen), growth arrest (Growth Arrest and DNA Damage-45) and programmed cell death (p53).
Proliferating Cell Nuclear Antigen (PCNA), Gadd45, p53 all showed significant decreases in concentration in gill tissue exposed to saltwater (34 ppt) in the warm temperature treatment. There was no significant effect of salinity within the cold temperature treatment for any of the proteins tested.
The CCAAT/Enhancer-binding proteins (C/EBP) are a class of transcription factors that act upon cellular proliferation and differentiation. C/EBP-𝛿 is the specific protein that is activated in response to stress stimuli. There were no significant differences observed in C/EBP-𝛿 concentrations in gill tissue.
|
179 |
Genotype by environment interactions in soybean for agronomic traits and nodule formationMagagane, Tshepo Gordene January 2011 (has links)
Thesis (M.Sc. Agriculture (Crop Science)) -- University of Limpopo, 2011 / The nature and magnitude of the genotype by environment interactions is important to identify superior and stable genotypes under the target environments. This will assist to maximize specific adaptation and to speed up the transfer of new cultivars to growers. The objective of this study was to determine the stability of selected soybean genotypes with regards to the agronomic traits, high yield and nodule formation. Field experiments were conducted under dryland conditions during the 2007/2008 and 2008/2009 growing seasons at the University of Limpopo’s experimental farm (Syferkuil) and at a farmer’s field at Gabaza community, Mopani District near Tzaneen. Ten selected soybean cultivars were evaluated under a randomised complete block design with three replications. Stability was assessed via joint regression and superiority analyses. Significant differences were found for genotypes, environments and genotype by environment interactions. Stability analysis after Eberhart and Russell’s model suggested that the genotypes showed marked differences to environmental changes. The cultivar superiority measure for seed yield indicated that variety Clark was the most stable genotype with an average yield of 5235 kg/ha, followed by L81-4858 and Barc-2 that provided average yield of 4839 kg/ha and 4582 kg/ha, respectively. In terms of number of nodules Magoye was observed to be stable with average of five nodules per plant. Cultivar Barc-2 was found stable for number of active nodules with an average of 3.17 active nodules per plant. Most of the genotypes performed better at Syferkuil than at Gabaza. In general Barc-2 was found stable for yield and other agronomic traits considered in this study. This variety could be suitable for large scale production in these or other similar environments in Limpopo Province.
|
180 |
Temperature sensing in plantsSangwan, Veena. January 2000 (has links)
No description available.
|
Page generated in 0.0992 seconds