• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 52
  • 52
  • 24
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural Characterisation and Optical Properties of Nanoporous Gold Films

Segerkvist, Anton January 2014 (has links)
Nanoporous metal films have many applications in a great variety of scientific fields, and especially nanoporous gold films have many applica- tions in green nanotechnology. Hence, structural and optical properties of such materials were investigated. Local density functions and local per- colation functions were calculated by using scaning electron micrographs and the optical properties of the films were calculated using the Hilfer equation. The results are presented in the report as graphs and show how the materials optical properties depend on the structure of the gold films.
2

Determining the Effective Parameters of Metamaterials

Woodley, Jonathan 31 August 2012 (has links)
In this dissertation the proper determination and allowable signs of the effective parameters of metamaterial structures will be examined. First, a method that was commonly used to determine the presence of a negative index of refraction will be discussed. It will be shown that this method, which relies on the appearance of transmission peaks in the region where the real parts of the effective permittivity and permeability are expected to be negative, does not provide sufficient evidence that a negative index exists. Two alternate methods will then be presented that can be used to properly determine the sign of the index. Then, the form of the index in media that exhibit backward wave propagation will be examined from a purely three dimensional wave propagation point of view. It will be shown that in an isotropic medium backward wave propagation requires that the index be negative and in an anisotropic medium it requires that the index be negative along at least one of the three principal axes. In short, the necessary and sufficient condition for the negative index of refraction is the existence of the backward wave. Next, a technique commonly used to retrieve the effective parameters in metamaterials from transmission and reflection data will be considered. It will be shown that this retrieval technique can lead to unphysical claims that the imaginary parts of the effective permittivity or permeability can be negative even though the medium remains passive. By comparing the effective parameters obtained analytically and from the retrieval technique it will be shown that these unphysical claims are the result of error in the numerical simulations. The concepts of causality and analyticity will also be discussed by considering the Lorentzian model and it will be shown that this model does not allow the imaginary parts of the permittivity or permeability to be negative in the metamaterials consisting of split ring resonators and split wires.
3

Determining the Effective Parameters of Metamaterials

Woodley, Jonathan 31 August 2012 (has links)
In this dissertation the proper determination and allowable signs of the effective parameters of metamaterial structures will be examined. First, a method that was commonly used to determine the presence of a negative index of refraction will be discussed. It will be shown that this method, which relies on the appearance of transmission peaks in the region where the real parts of the effective permittivity and permeability are expected to be negative, does not provide sufficient evidence that a negative index exists. Two alternate methods will then be presented that can be used to properly determine the sign of the index. Then, the form of the index in media that exhibit backward wave propagation will be examined from a purely three dimensional wave propagation point of view. It will be shown that in an isotropic medium backward wave propagation requires that the index be negative and in an anisotropic medium it requires that the index be negative along at least one of the three principal axes. In short, the necessary and sufficient condition for the negative index of refraction is the existence of the backward wave. Next, a technique commonly used to retrieve the effective parameters in metamaterials from transmission and reflection data will be considered. It will be shown that this retrieval technique can lead to unphysical claims that the imaginary parts of the effective permittivity or permeability can be negative even though the medium remains passive. By comparing the effective parameters obtained analytically and from the retrieval technique it will be shown that these unphysical claims are the result of error in the numerical simulations. The concepts of causality and analyticity will also be discussed by considering the Lorentzian model and it will be shown that this model does not allow the imaginary parts of the permittivity or permeability to be negative in the metamaterials consisting of split ring resonators and split wires.
4

Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

Xiao, Bingmu 05 1900 (has links)
In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.
5

Wave Propagation in Negative Index Materials

Aylo, Rola 12 August 2010 (has links)
No description available.
6

VO2-based Thermochromic and Nanothermochromic Materials for Energy-Efficient Windows : Computational and Experimental Studies

Li, Shuyi January 2013 (has links)
VO2-based films are thermochromic and exhibit high or low infrared transmittance when the temperature is below or above a critical temperature. The thermochromic switching is passive and reversible, and therefore VO2 based films are promising for energy-efficient window appli­cations. However the practicaluse of VO2 for energy-efficient windows has long been hampered by low luminous transmittance and low solar energy transmittance modulation. The main goal of this dissertation work is to address these issues. The first half of the work proposes the concept of nanothermochromics for simultaneous improvement of luminous transmittance and modulation of solar energy throughput. nanoth­ermochromics considers VO2 nanoparticle composite layers, whose optical properties were modeled by effective medium theories. Calculations on VO2 spheroids have shown that VO2 nanoparticles, especially nanospheres, can offer dramatically improved luminous transmittance and solar transmittance modulation that are not possible for films. Calculations done on coreshell nanoparticles showed comparable improvements and offer an opportunity to reduce the material costs. It was also found that the composite of In2O3:Sn (ITO) and VO2 can yield moderately high luminous transmittance, solar transmittance modulation and low-emittance properties. In the second half of the dissertation work, Mg-doped VO2 films were sputter deposited. Their band gaps and Mg-content were investigated by means of optical absorption measurement and Rutherford backscattering spectrometry, respectively. The band gaps of VO2 were found to increase by ∼3.9±0.5 eV per unit of atom ratio Mg/(Mg+V) for 0<Mg/(Mg+V)<0.21. Computations based on effective medium theory were done to estimate the performance of Mg­-doped VO2 films and nanoparticle composite layers. The results suggest that moderately doped VO2 films with 0<Mg/(Mg+V)<0.06 perform better than un-doped films and that the perfor­mance can be further enhanced with one layer of antireflection coating. The best results were achieved by un-doped VO2 nanospheres, closely followed by the VO2 nanospheres with low Mg-content. Furthermore, the an experimental study on sputter deposited VO2 nanorods has identified the geometry of the oxygen gas inlet, the type of substrate, the substrate temperature and the layer thickness as important factors that influence the growth morphology. Taken as a whole, nanothermochromics offered by VO2 nanoparticles was shown to be the best solution for VO2 based thermochromic energy-efficient window coatings.
7

JOINT SEISMIC/ELECTRICAL EFFECTIVE MEDIUM MODELLING OF HYDRATE-BEARING MARINE SEDIMENTS AND AN APPLICATION TO THE VANCOUVER ISLAND MARGIN

Ellis, M.H., Minshull, T.A., Sinha, M.C., Best, Angus I. 07 1900 (has links)
Remote determination of the hydrate content of marine sediments remains a challenging problem. In the absence of boreholes, the most commonly used approach involves the measurement of Pwave velocities from seismic experiments. A range of seismic effective medium methods has been developed to interpret these velocities in terms of hydrate content, but uncertainties about the pore-scale distribution of hydrate can lead to large uncertainties in this interpretation. Where borehole geophysical measurements are available, electrical resistivity is widely used as a proxy for hydrate content, and the measurement of resistivity using controlled source electromagnetic methods shows considerable promise. However, resistivity is commonly related to hydrate content using Archie’s law, an empirical relationship with no physical basis that has been shown to fail for hydrate-bearing sediments. We have developed an electrical effective medium method appropriate to hydrate-bearing sediments based on the application of a geometric correction to the Hashin-Shrikman conductive bound, and tested this method by making resistivity measurements on artificial sediments of known porosity. We have adapted our method to deal with anisotropic grains such as clay particles, and combined it with a well-established seismic effective medium method to develop a strategy for estimating the hydrate content of marine sediments based on a combination of seismic and electrical methods. We have applied our approach to borehole geophysical data from Integrated Ocean Drilling Program Expedition 311 on the Vancouver Island margin. Hydrate saturations were determined from resistivity logs by adjusting the geometric factor in areas of the log where hydrate was not present. This value was then used over the entire resistivity log. Hydrate saturations determined using this method match well those determined from direct measurements of the methane content of pressurized cores.
8

A NEW METHOD FOR THE DETECTION AND QUANTIFICATION OF DEEP-OCEAN METHANE HYDRATES USING SEISMICS

Wojtowitz, Gabrielle, Zervos, Antonis, Clayton, Chris R.I. 07 1900 (has links)
Methane gas hydrates have attracted significant international interest as a potential future energy resource, but also as a geotechnical hazard for offshore operations related to hydrocarbon recovery. In this context, the abilities to detect the presence of hydrate in marine sediments and to quantify the amount of hydrate contained therein, have become increasingly important over the years. Detection and quantification of hydrates are done on the basis of seismic surveys, which measure indirectly the bulk dynamic properties of large volumes of sediment in situ. Seismic data are then interpreted using an effective medium model, which employs theoretical assumptions to relate wave velocities to gas hydrate content of the sediment. Wave velocity can then be used to infer hydrate concentration levels. A host of such effective medium models exists in the literature. Many of these models have been calibrated on and tested on specific sites, and are not readily transferable to other settings. In addition, many models ignore the existence of heterogeneities of the host sediment, or the inhomogeneous distribution of hydrate within it. These, however, are factors that may have a significant impact on the seismic signature of the sediment-hydrate system, and thus on the predicted quantity of hydrate. This paper presents a review of existing effective medium models and identifies general areas for improvement. A new numerical modelling method is outlined that enhances existing effective medium approaches, by taking explicitly into account different hydrate morphologies within the host sediment.
9

“Coarse Grained" Bead Modeling of Macromolecules Transport in Free Solution and in a Gel

Wu, Hengfu 12 August 2014 (has links)
The modeling of transport behavior of charged particles carried out in our laboratory is based on classical continuum electro kinetic theory. It is applied to a variety of systems from small electrolyte ions to macromolecules including peptides, DNA and nanoparticles. Systems range from weakly charged particles to highly charged ones. Transport properties studied include conductance, electrophoresis, and diffusion. In this dissertation, the conductance of polyvalent electrolytes ions is studied both by a “small ion” model [R.M. Fuoss, L. Onsager, J. Phys. Chem. 61 (1957) 668] and “large ion” model [R.W. O’Brien, L.R. White, J. Chem. Soc. Faraday Trans. 2 (74) (1978) 1607)]. Also, the coarse-grained continuum primitive model is developed and used to characterize the titration and electrical conductance behavior of aqueous solutions of fullerene hexa-malonic acid, which is a highly charged electrolyte with an absolute valence charge as high as 12. Free solution electrophoresis is closely related to conductance and a coarse-grained bead modeling methodology, BMM, developed in the Allison’s laboratory starting in 2006, is generalized to characterize peptide systems with respect to the charge, conformation, and possibly specific interactions with components of the BGE. For weakly charged peptides, the electrostatic potential is treated at the level of linear Poisson-Boltzmann equation, which predicts the electrophoretic mobility with considerable accuracy [S. Allison, H. Pei, U. Twahir, H. Wu, J. Sep. Sci., 2010, 33(16):2430-2438], but fails for highly charged systems. A new nonlinear Poisson-Boltzmann, NLPB-BM procedure is developed and applied to the free solution electrophoretic mobility of low molecular mass oligolysines. The difficulty of highly charged systems is twofold: more complex handeling of electrostatics and accounting for the relaxation effect. Both issues are addressed in this dissertation. A related problem we investigated deals with the retarding influence of a gel on the rotational motion of a macromolecule. This is investigated within the framework of the Effective Medium (EM) model and is applied to examine the electric birefringence decay of a 622 base pair DNA fragment in an agarose gel. Modeling is also compared with experiment.
10

Application of Effective Medium Modeling to Plasmonic Nanosphere Waveguides

January 2013 (has links)
abstract: A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a viable approach to obtaining these short wavelengths. To assess the feasibility of such a system, an effective medium model of a chain of Noble metal plasmonic nanospheres is developed, leading to a straightforward calculation of the waveguiding properties. Evaluation of other models for such structures that have appeared in the literature, including an eigenvalue problem nearest neighbor approximation, a multi- neighbor approximation with retardation, and a method-of-moments method for a finite chain, show conflicting expectations of such a structure. In particular, recent publications suggest the possibility of regions of invalidity for eigenvalue problem solutions that are considered far below the onset of guidance, and for solutions that assume the loss is low enough to justify perturbation approximations. Even the published method-of-moments approach suffers from an unjustified assumption in the original interpretation, leading to overly optimistic estimations of the attenuation of the plasmon guided wave. In this work it is shown that the method of moments approach solution was dominated by the radiation from the source dipole, and not the waveguiding behavior claimed. If this dipolar radiation is removed the remaining fields ought to contain the desired guided wave information. Using a Prony's-method-based algorithm the dispersion properties of the chain of spheres are assessed at two frequencies, and shown to be dramatically different from the optimistic expectations in much of the literature. A reliable alternative to these models is to replace the chain of spheres with an effective medium model, thus mapping the chain problem into the well-known problem of the dielectric rod. The solution of the Green function problem for excitation of the symmetric longitudinal mode (TM01) is performed by numerical integration. Using this method the frequency ranges over which the rod guides and the associated attenuation are clearly seen. The effective medium model readily allows for variation of the sphere size and separation, and can be taken to the limit where instead of a chain of spheres we have a solid Noble metal rod. This latter case turns out to be the optimal for minimizing the attenuation of the guided wave. Future work is proposed to simulate the chain of photonic nanospheres and the nanowire using finite-difference time-domain to verify observed guided behavior in the Green's function method devised in this thesis and to simulate the proposed nanosensing devices. / Dissertation/Thesis / M.S. Electrical Engineering 2013

Page generated in 0.0603 seconds