• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physique de la déflexion picoseconde par réseaux photoinduits dans les semiconducteurs

Grac, Rodolphe 22 October 1996 (has links) (PDF)
Notre travail s'intègre dans les recherches actuelles sur la continuité optique du traitement et du transport de l'information. Une des techniques visant à assurer cette continuité optique consiste à réaliser une commutation de voies par déflexion holographique. Nous avons étudié théoriquement et expérimentalement la déflexion d'impulsions laser d'une durée voisine de 20 picosecondes par des réseaux photoinduits dans les semiconducteurs. Après avoir décrit et caractérisé les dispositifs expérimentaux, nous présentons les performances de deux matériaux massifs II-VI, CdZnTe (à la longueur d'onde 0,8micron) et HgCdTe (à la longueur d'onde 1,5micron). Dans le domaine spectral de la queue d'Urbach, l'efficacité de diffraction au premier ordre atteint sept pour cent pour les deux matériaux. L'ensemble des résultats expérimentaux est expliqué par un modèle basé sur l'écrantage statique des microchamps électriques locaux dus aux phonons LO. Dans un second temps, nous étudions les réseaux plasma photogénérés dans des puits quantiques InGaAs / InGaAsP inclus dans une cavité de Fabry-Pérot. Les résultats sont comparés à une modélisation prenant en compte les effets de cavité. Ceux-ci induisent une amplification du signal diffracté dont les limites sont discutées. Nous présentons enfin des résultats de modulation de transmission optique dans des puits quantiques CdTe / CdZnTe sous polarisation externe. Nous montrons que les porteurs photogénérés écrantent le champ électrique appliqué produisant ainsi une variation d'absorption par disparition de l'effet Stark dans les puits. Après avoir introduit des coefficients de mérite, nous comparons les performances des différentes structures.
2

Étude numérique et expérimentale de la diffraction en géométrie conique de réseaux optiques aux longueurs d’ondes X et UV / Numerical and experimental study of diffraction by optical gratings in conical geometry at X-ray and UV wavelengths

Akarid, Ahmed 01 October 2019 (has links)
L’utilisation de réseaux optiques dans la géométrie de diffraction conique a connu ces dernières décennies un essor remarquable dans les domaines UV et X grâce à ses propriétés particulières: absence de l’écrantage derrière les traits du réseau aux incidences rasantes, faible dispersion angulaire limitant l’étirement temporel, efficacité de diffraction élevée. Son usage s’est imposé pour la monochromatisation d’impulsions ultra-brèves. C’est aussi l’une des deux options retenues par la Nasa pour le spectrographe à réseau de l’Observatoire à rayon X de la future mission Lynx. Ce travail de thèse contribue au développement de méthodes numériques pour modéliser les effets de diffraction par des réseaux dans une géométrie encore peu étudiée sous cet aspect. La complexité de cette étude réside dans le couplage inhérent entre les deux états fondamentaux de polarisation. Du point de vue numérique, il impose un calcul ‘’vectoriel’’, là où, en géométrie classique des calculs scalaires suffisent. Notre travail s’est appuyé sur les méthodes numériques de calcul de diffraction par des structures périodiques déjà développées dans le cadre de la géométrie classique. Ces méthodes sont basées sur la théorie différentielle, qui consiste à propager une série d’ondes planes au travers de la zone modulée. La méthode différentielle employée est complétée par l’usage de l’algorithme de propagation de la matrice réflectivité. On contourne ainsi certains problèmes de convergence. Dans la partie théorique de ce travail, ces algorithmes sont étendus pour s’adapter aux cas de géométrie oblique. Sur cette base théorique, nous avons pu développer un code de calcul, nommé COROX, fonctionnant dans toutes les géométries d’utilisation. Un certain nombre de réseau types ont été étudiés, tant en géométrie oblique que classique, pour mettre en évidence, non seulement les efficacités de diffraction mais encore les effets de polarisation, (paramètres de Stokes et matrice de Müller) ainsi que les phases spectrales. Des propriétés intéressantes ont été remarquées, comme l’existence d’une composante circulaire non négligeable diffractée par réseau lamellaire quand l’onde incidente polarisée à 45° par rapport au plan du réseau. Le comportement de la phase spectrale est également une donnée significative pour une future gestion d’impulsions ultra-brèves. Des mesures de diffraction ont été effectuées sur la ligne Métrologie du Synchrotron SOLEIL, sur un réseau blazé de 150 traits/mm. Un accord raisonnable entre efficacités mesurées et calculées est constaté si l’on tient compte de la forte rugosité du réseau étudié. / The conical geometry of optical grating diffraction has been suggested and studied, in the last 10 years, for cutting edge applications in the VUV and X-ray domains, due to its specific properties such as: absence of screen inside the grating grooves at grazing incidence, low angular dispersion which limits the temporal spread of short pulses, very high diffraction efficiencies. It has been accepted as the first choice technology for VUV short pulses monochromatization. It is also one of the two options selected by NASA, for the grating spectrograph of the future X-ray Observatory of the Lynx mission. This thesis reports our contribution to the development of numerical methods in order to model the effects of diffraction by optical gratings in this still little studied geometry. This study is made more complex by an inherent coupling between the two fundamental polarization modes. From the numerical aspect, it requires performing “vectorial” computations, whereas, in a classical diffraction geometry, scalar computations are sufficient. Our work is based on numerical methods already developed for modeling optical diffraction by periodic structures in the framework of classical geometry. These methods are using on the differential theory, whose main concept is propagating a set of plane waves throughout the modulated area. We use the differential method together with an algorithm of reflectivity matrix propagation. It overcomes some of the convergence issues. In the theoretical part of this work, reflectivity matrix algorithms are extended to the case of oblique geometry. On these theoretical grounds, we developed a computation code, named COROX, which can be applied in any geometry. A number of typical grating cases have been studied, both in the conical and of le classical one. The output is not only the diffraction efficiencies, but also the polarization properties (Stokes parameters, Müller matrix), as well as the spectral phases. Interesting properties have been noticed, such as the presence of a non-negligible circularly polarized component diffracted from a lamellar grating when the incident wave is linearly polarized at 45° from the grating plane. The spectral phase behavior is also a significant data for an eventual shape tayloring of ultrashort pulses. Diffraction efficiency measurements have been performed on the Metrology beamline of Synchrotron SOLEIL, using a 150 lines/mm blazed grating as a test object. A reasonable agreement between measured and computed efficiencies has been obtained, provided that the rather high roughness of this grating is taken into account.
3

Conception, réalisation et évaluation d'un implant diffractif bifocal intracornéen pour la correction de la presbytie / Design, elaboration and implementation of a diffractive bifocal intracorneal implant to correct presbyopia

Castignoles, Fannie 25 November 2011 (has links)
Actuellement, la presbytie peut être corrigée chirurgicalement à l’aide d’implants intraoculaires réfractifs ou diffractifs multifocaux (chirurgie endoculaire invasive et irréversible) ou en intracornéen avec une correction multifocale réfractive (correction laser irréversible, ou insertion d’un implant dans le stroma). L’objectif de ce travail est de développer un nouvel implant permettant de corriger la presbytie, qui allie l’innocuité et la réversibilité d’une correction intracornéenne, à l’efficacité du diffractif. Le design des profils optiques bifocaux a été permis grâce au développement d’outils de simulation optique. Les efficacités de diffraction sont calculées à partir de la propagation du champ électrique par spectre angulaire. La qualité optique est déterminée d’après les simulations de Fonction de Transfert de Modulation obtenues sous Zemax. Des simulations de rendu d’images permettent de visualiser les effets de différents profils envisagés. Les paramètres critiques du design optique sont déterminés. Le choix du matériau dépend des contraintes de biocompatibilité de l’implant et des techniques de fabrication. La solution retenue est un hydrogel à forte teneur en eau, couplé à une nouvelle architecture de l’implant. L’hydrogel est obtenu par polymérisation radicalaire de macromonomères difonctionnels de poly(éthylène glycol) de masses molaires de l’ordre de 8000 g.mol‐1 qui conduisent à des propriétés mécaniques et une perméabilité aux nutriments compatibles avec l’application. La réalisation, la stérilisation et la caractérisation optique de prototypes ont abouti à la preuve du concept d’un implant bifocal diffractif intracornéen / Presbyopia can be corrected with surgery by means of refractive or diffractive multifocal intraocular lenses (which imply an irreversible and invasive endocular surgery) or by intracorneal multifocal refractive correction (irreversible laser correction, or insertion of an intrastromal implant). This work aims at developing a new implant to correct presbyopia, which takes advantage of both the harmlessness and the reversibility of an intracorneal correction, and the efficiency of diffractive optics. The design of the bifocal optical profiles was based on the development of optical simulation tools. The diffractive efficiencies are calculated from the distribution of the electric field with the method of angular spectrum. The optical quality is determined according to the simulations of Modulation Transfer Function obtained with Zemax. Images simulations show the effects of the different profiles studied. The critical parameters of the optical design are also determined. The choice of the material depends on several constraints such as biocompatibility and techniques of manufacturing. The adopted solution relies on the used of an hydrogel with high water content and the design of a new implant architecture. The hydrogel is obtained by radical polymerization of difunctional macromonomers of poly(ethylene glycol) with molar masses around 8000 g.mol‐1, allowing mechanical properties and permeability to nutriments compatible with the application. The realization, the sterilization and the characterization of prototypes showed the proof of the concept of a diffractive bifocal intracorneal implant

Page generated in 0.1003 seconds