Spelling suggestions: "subject:"dfficiency factor"" "subject:"cfficiency factor""
1 |
FATOR DE EFICIÊNCIA DA RESISTÊNCIA PRISMA/BLOCO CERÂMICO DE PAREDES VAZADAS / STRENGHT EFFICIENCY FACTOR FOR CERAMIC HOLLOW BLOCKS MASONRY PRISMSPortella, Rafael Pires 22 January 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The Brazilian civil construction showed in the last few years a large increase in technology, thus increasing the competitiveness in the labor market. In order to remain in compliance with the standard requirements, builders need to improve, both in workmanship as in materials used questions. The masonry had an important growth in the last few years, thus increasing the need to develop studies and constantly improve the National Standards. The compressive strength is the most important factor in structural masonry, than a study and deep knowledge of the subject is necessary for designers can accomplish the projects in the best possible manner. For the use of ceramic block, NBR 15812-1 recommends that the efficiency factor walls/prism that must be used is 0,70, but there is no standardized value for the efficiency factor prism/block, leaving only to designer the choice of this value. For the project to be well specified, with the components selected as best as possible, the efficiency factor prism block have decisive role, as thought the designer calculate the prism designer strength, he must specify the mean compressive strength of mortar as the characteristic compressive strength of blocks and, if necessary, grout. With the aid of the Building Construction Material Laboratory of the Federal University of Santa Maria, which provided its tests results of the years 2007 to 2014, a study was conducted to calculate the efficiency factor of prism/block in different strength ranges of the blocks. Following this study, analyzes were made to try to predict behavior of efficiency factor due to the compressive strength of the block and be able to get a usual value for the conditions of the tested components. Only ceramic hollow blocks with no grout were approached in this study because they were in a large amount, providing greater reliability to the results. / A Construção Civil no Brasil apresentou nos últimos anos um grande aumento na área tecnológica, aumentando com isso a competitividade no mercado de trabalho. Para poderem se manter atuais e cumprindo com os requisitos de normas, as empresas da área da construção necessitam se aprimorar, tanto no quesito mão de obra como no quesito dos materiais utilizados. O método construtivo de alvenaria estrutural obteve um crescimento muito importante nos últimos anos, aumentando assim a necessidade de se desenvolver estudos e melhorar cada vez mais as normas que regem tal método. A resistência à compressão é o fator mais importante na alvenaria estrutural, logo um estudo e conhecimento aprofundado do tema se faz necessário para os projetistas poderem conseguir realizar os projetos da melhor maneira possível. Para a utilização de blocos cerâmicos, a NBR 15812-1 preconiza que o fator de eficiência parede/prisma que se deve utilizar é de 0,70, porém, não existe um valor normatizado para o fator de eficiência prisma/bloco, deixando apenas para o projetista a escolha desse valor. Para o projeto ser bem especificado, com os componentes escolhidos da maneira mais condizente com o cenário, o fator de eficiência prisma/bloco têm função determinante, visto que apesar de o projetista calcular a resistência de projeto do prisma, ele precisa especificar a resistência à compressão média da argamassa como a resistência característica à compressão de blocos e, quando necessário, grautes. Com a ajuda do Laboratório de Materiais de Construção Civil da Universidade Federal de Santa Maria, que disponibilizou os seus ensaios dos anos de 2007 até 2014, foi realizado um estudo para se calcular o fator de eficiência/prisma bloco em diferentes faixas de resistência dos blocos. Após este estudo, foram feitas análises para tentar prever o comportamento do fator de eficiência frente à resistência à compressão dos blocos e poder se chegar em um valor usual para as condições dos componentes ensaiados. Apenas blocos cerâmicos de parede vazada e não grauteados foram abordados no estudo pois eram em uma quantidade maior, fornecendo uma maior confiabilidade aos resultados obtidos.
|
2 |
Studium možností aktivace el. popílků jako aktivní příměsi do betonu / Study of possibilities of activation of power plant fly ash as an active ingredient in concreteMáša, Jiří January 2020 (has links)
Global concrete production is increasing, which brings some environmental burden. A certain solution is the use of secondary raw materials, which has been a long-standing practice in the construction industry. One of the most widespread secondary raw materials is power fly ash. However, in recent years trends have been directed towards maximizing their utility properties. The aim of this work was to study the possibilities of activation of power plant fly ash as an active admixture in concrete. The thesis is divided into two parts, the theoretical and the practical part. The theoretical part describes in detail the possibilities of power plant fly ash activation for use as an active admixture in concrete. The practical part of the thesis is focused on mechanical activation, where the knowledge of the theoretical part is verified on various fly ash.
|
3 |
Liquid-solid contacting in trickle-bed reactorsVan Houwelingen, ArJan 01 December 2009 (has links)
Several types of reactors are encountered in industry where reagents in a gas and a liquid phase need to be catalysed by a solid catalyst. Common reactors that are used to this end, are trickle-bed reactors, where gas and liquid flow cocurrently down a packed bed of catalyst. Apart from the catalytic process itself, several mass transfer steps can influence the rate and/or selectivity of a solid catalysed gas-liquid reaction. In trickle-bed reactors, flow morphology can have a major effect on these mass transfer steps. This study investigates the interaction between liquid flow morphology and mass transfer in trickle-bed reactors from three different angles. The primary focus is on liquid-solid mass transfer and internal diffusion as affected by the contacting between the liquid and the catalyst. First, the contacting between the liquid and the solid in trickleflow, or wetting efficiency, is characterised using colorimetry. Though this investigation is limited to the flow of nitrogen and water over a packed bed at ambient conditions, it provides useful information regarding liquid flow multiplicity behaviour and its influence on the distribution of fractional wetting on a particle scale. The colorimetric study also provides descriptions of the geometry of the liquid-solid contacting on partially wetted particles. These are used in a second investigation, for the numerical simulation of reaction and diffusion in partially wetted catalysts. This second investigation uses numerical simulations to evaluate and develop simple theoretical descriptions of liquid-solid contacting effects on catalyst particle efficiency. Special attention is given to the case where external and intraparticle mass transfer rates of both a volatile and non-volatile reagent affect the overall rate of reaction. Also, since these are not often considered in theoretical studies, some suggestions are made for the evaluation of the particle efficiency of eggshell catalyst. Finally, liquid-solid contacting is investigated in a high-pressure pilot reactor. Wetting efficiency is measured with a useful technique that does not rely on descriptions of particle kinetics or liquid-solid mass transfer rates. Liquid-solid mass transfer coefficients are also measured and results agree well with the colorimetric investigation, suggesting the existence of different types of flow within in the hydrodynamic multiplicity envelope of trickle-flow. Since it consists of different investigations of liquid-solid contacting from different angles, the study highlights several aspects of liquid-solid contacting and how it can be expected to influence trickle-bed reactor performance. / Thesis (PhD)--University of Pretoria, 2009. / Chemical Engineering / unrestricted
|
4 |
Performance and strut efficiency factor of concrete deep beams reinforced with GFRP bars / Performance et facteur d'efficacité de la bielle de poutres profondes en béton armé avec des barres de PRFVMohamed, Khaled Ahmed January 2015 (has links)
Abstract : Deep reinforced concrete beams are commonly used as transfer girders or bridge bents, at which its safety is often crucial for the stability of the whole structure. Such elements are exposed to the aggressive environment in northern climates causing steel-corrosion problems due to the excessive use of de-icing salts. Fiber-reinforced polymers (FRP) emerged as non-corroded reinforcing materials to overcome such problems in RC elements. The present study aims to address the applicability of concrete deep beams totally reinforced with FRP bars. Ten full-scale deep beams with dimensions of 1200 × 300 × 5000 mm were constructed and tested to failure under two-point loading. Test variables were shear-span depth ratio (equal to 1.47, 1.13, and 0.83) and different configurations of web reinforcement (including vertical and/or horizontal web reinforcement). Failure of all specimens was preceded by crushing in the concrete diagonal strut, which is the typical failure of deep beams. The test results indicated that, all web reinforcement configurations employed in the tested specimens yielded insignificant effects on the ultimate strength. However, strength of specimens containing horizontal-only web reinforcement were unexpectedly lower than that of specimens without web reinforcement. The web reinforcement’s main contribution was significant crack-width control. The tested specimens exhibited reasonable deflection levels compared to the available steel-reinforced deep beams in the literature. The development of arch action was confirmed through the nearly uniform strain distribution along the length of the longitudinal reinforcement in all specimens. Additionally, the basic assumption of the strut-and-tie model (STM) was adequately used to predict the strain distribution along the longitudinal reinforcement, confirming the applicability of the STM for FRP-reinforced deep beams. Hence, a STM based model was proposed to predict the strength of FRP-reinforced deep beams using the experimental data, in addition to the available experimentally tested FRP-reinforced deep beams in the literature. Assessment of the available STMs in code provisions was conducted identifying the important parameters affecting the strut efficiency factor. The tendency of each parameter (concrete compressive strength, shear span-depth ratio, and strain in longitudinal reinforcement) was individually evaluated against the efficiency factor. Strain energy based calculations were performed to identify the appropriate truss model for detailing FRP-reinforced deep beams, hence, only four specimens with vertical web reinforcement exhibited the formation of two-panel truss model. The proposed model was capable to predict the ultimate capacity of the tested deep beams. The model was also verified against a compilation of a data-base of 172 steel-reinforced deep beams resulting in acceptable level of adequacy. The ultimate capacity and performance of the tested deep beams were also adequately predicted employing a 2D finite element program (VecTor2), which provide a powerful tool to predict the behavior of FRP-reinforced deep beams. The nonlinear finite element analysis was used to confirm some hypotheses associated with the experimental investigations. / Résumé : Les poutres profondes en béton armé (BA) sont couramment utilisées comme poutre de transfert ou coude de pont, comme quoi sa sécurité est souvent cruciale pour la sécurité de l’ensemble de la structure. Ces éléments sont exposés à un environnement agressif dans les climats nordiques causant des problèmes de corrosion de l’acier en raison de l’utilisation excessive de sels de déglaçage. Les polymères renforcés de fibres (PRF) sont apparus comme des matériaux de renforcement non corrodant pour surmonter ces problèmes dans les BA. La présente étude vise à examiner la question de l'applicabilité des poutres profondes en béton complètement renforcées de barres en PRF. Dix poutres profondes à grande échelle avec des dimensions de 1200 × 300 × 5000 mm ont été construites et testées jusqu’à la rupture sous chargement en deux points. Les variables testées comprenaient différents ratios de cisaillement porté/profondeur (égal à 1.47, 1.13 et 0.83) ainsi que différentes configurations d’armature dans l’âme (incluant un renforcement vertical avec ou sans renforcement horizontal). La rupture de tous les spécimens a été précédée par l’écrasement du béton dans le mât diagonal, ce qui est la rupture typique pour les poutres profondes en BA. Les résultats ont révélé que toutes les configurations de renforcement de l’âme employées dans les spécimens d'essais avaient un effet négligeable sur la résistance ultime. Toutefois, la résistance des spécimens contenant uniquement un renforcement horizontal était étonnamment inférieure à celle des spécimens sans renforcement. La contribution principale du renforcement de l’âme était dans le contrôle de la largeur de fissuration. Les spécimens examinés présentaient une déflexion raisonnable par rapport à ce qui est disponible pour les poutres profondes renforcées en acier dans la littérature. Le développement de l'effet d'arche a été confirmé par la distribution quasi uniforme des déformations le long du renforcement longitudinal dans tous les spécimens. En outre, l'hypothèse de base du modèle des bielles et tirants (MBT) a été utilisée adéquatement pour prédire la distribution de déformation le long du renforcement longitudinal, confirmant l'applicabilité du MBT pour les poutres profondes armées de PRF. Par conséquent, un modèle basé sur un MBT a été proposé afin de prédire la résistance des poutres profondes renforcées de PRF en utilisant les données expérimentales en plus de la mise à l'épreuve expérimentalement des poutres profondes renforcées de PRF trouvées dans la littérature. Une évaluation des MTB disponibles dans les dispositions des codes a été menée afin de déterminer les paramètres importants affectant le facteur d'efficacité de la bielle. La tendance de chaque paramètre (la résistance à la compression du béton, le ratio de cisaillement porté/profondeur, et la déformation dans le renforcement longitudinal) a été évaluée individuellement contre le facteur d'efficacité. Des calculs basés sur l’énergie des déformations ont été effectués pour identifier le modèle de treillis approprié afin de détailler les poutres profondes renforcées de PRF. Par conséquent, seulement quatre spécimens avec un renforcement vertical dans l’âme présentaient la formation de modèles avec deux panneaux de treillis. Le modèle proposé a été capable de prédire la capacité ultime des poutres profondes testées. Le modèle a également été vérifié contre une base de données de 172 poutres profondes renforcées en acier aboutissant en un niveau acceptable de pertinence. La capacité ultime et la performance des poutres profondes testées ont été également adéquatement prédites employant un programme d'éléments finis en 2D (VecTor2), ce qui fournira un puissant outil pour prédire le comportement des poutres profondes renforcées de PRF. L'analyse non linéaire par éléments finis a été utilisée afin de confirmer certaines hypothèses associées à l'étude expérimentale.
|
5 |
Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure DetectionQian, Chengliang 03 October 2013 (has links)
About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively.
This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals.
The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with a die area of 0.45 mm^2.
The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-μm CMOS process. The die size is 11.25 mm^2.
The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy.
|
6 |
Effects of 4x4 full diallel crossbreeding of chickens on growth production performance, genetics and phenotypic characteristicsMogoje, Barileng Leonard 12 1900 (has links)
Poultry provide affordable animal protein products compared to other animal products in agricultural industry. The demand of organic food by world health organisation and call for discard of conventional laying cage production method led to this research study. The aim of the study was to determine how (4 x 4) full diallel crossbreeding of the Potchefstroom Koekoek (PK), Naked neck (NN), Lohmann Brown (LB) and White Leghorn (WL) had an effect on production performance, egg parameters, genetic and phenotypic characteristics of F1 crossbreed offspring. The study was conducted at the Agricultural Research Council (ARC), Livestock Production Improvement at the Irene Campus, which is situated about 25 km south of Pretoria. The (4 x 4) full diallel crossbreeding design used on four chicken breeds to produce four pure breeds, six crossbreeds and six reciprocal crosses. The total number of 352 chickens with16 treatments (2 cocks and 20 hens) used in phase 1 and 384 chickens 16 F1-treatments (3 cocks + 21 hens) used in phase 2. Data was analysed by full factorial analysis of variance (ANOVA), General Linear Model procedures and Scheffe post-hoc for multiple comparison of the means of different variable data. The outcome had shown that crossbreeding had an effect on the production performance, genetic and phenotypic characteristics. The performed F1 crossbreeds emerge from crossbreeding between the local dual-purpose PK and commercial LB chicken breeds. PKLB dominated on growth and production performance traits compared to other crossbreeds. All set null hypothesis differ significantly at (p < 0.05), the outcome of all five hypothesis of this study were rejected. In conclusion PKLB was the best performing F1 crossbreed, based on its best performance on growth, FCR, cost of rearing, productive, high quality safe eggshell, economic efficiency and consumer preference (brown eggshell and yolk colour). / Dikgogo di neelana ka dikumo tsa poroteine ya diphologolo go tshwantshanngwa le dikumo tsa diphologolo tse dingwe mo intasetering ya temo. Tlhokego ya dijo tse di bolang mo mekgatlhong ya boitekanelo ya lefatshe le pitso ya go latlha mekgwa ya kumo ya dikgetshe tsa go beela tsa tlwaelo di ne tsa isa kwa thutong ya patlisiso eno. Maikaelelo a thuto eno ke go tlhomamisa gore tsadiso ya kgabaganyo ya dilo tse pedi kgotsa go feta go tshwantshanya kgolagano ya mofuta wa dijene le tikologo tse di tletseng tsa (4 x 4) tsa Potchefstroom Koekoek (PK), Naked Neck (NN), Lohmann Brown (LB) le White Leghorn (WL) di na le ponalo mo tiragatsong ya kumo, diparametera tsa mae, le dijene le diponagalo tsa kgolagano ya mofuta wa dijene le tikologo tsa ditsadiso tsa kgabaganyo tsa ngwana wa F1. Thuto e ne ya diragadiwa kwa Agricultural Research Council (ARC) le Tokafatso ya Kumo ya Diruiwa kwa khempaseng ya Irene, e e agilweng bokana ka 25 km jwa borwa jwa Pretoria. Ditsadiso tsa kgabaganyo tsa dilo tse pedi kgotsa go feta go tshwantshanya kgolagano ya mofuta wa dijene le tikologo tse di tletseng tsa (4 x 4) di ne tsa dirisiwa mo mefuteng ya ditsadiso tsa dikgogo go ntsha mefuta ya ditsadiso e e tletseng e mene, ditsadiso tsa kgabaganyo tse thataro le dikgabaganyo tse di tshwanang tse thataro. Palo e e tletseng ya dikgogo tse di 352 ka ditiragatso di le 16 (mekoko e le 2 le dithole di le 20) di ne tsa dirisiwa mo letlhakoreng la 1 le dikgogo di le 384 ka ditiragatso tsa F1 di le 16 (mekoko e le 3 + dithole di le 21) di ne tsa dirisiwa mo letlhakoreng la 2. Data e ne ya tshetshereganngwa ka tshetshereganyo ya dintlha tse di tletseng tsa pharologantsho (ANOVA), dikgato tsa General Linear Model le tshwantshanyo ya bontsintsi ya morago (ANOVA), dikgato tsa General Linear Model le tshwantshanyo ya bontsintsi ya morago ga tiragalo ya Scheffe ka mekgwa ya data ya pharologantsho e e farologaneng. Ditlamorago di ne tsa bontsha gore ditsadiso tsa kgabaganyo di na le ponalo mo tiragatsong ya kumo, ga mmogo le diponagalo tsa dijene le setlhopha sa kgolagano ya mofuta wa dijene le tikologo. Go ne ga diriswa mefuta ya ditsadiso tsa kgabaganyo ya F1 tse di tlhagelelang go tswa mo ditsadisong tsa kgabaganyo magareng ga mefuta ya ditsadiso tsa dikgogo tsa PK tsa lebaka la gabedi la selegae le LB ya kgwebo. PKLB e ne ya fekeetsa metlhala ya tiragatso ya kgolo le kumo go tshwantshanngwa le mefuta ya ditsadiso tsa kgabaganyo tse dingwe. Setlhopha sotlhe sa dikakanyo tsa lefela se
x
farologana mo go bonagalang ka (p < 0.05) le ditlamorago tsa dikakanyo tse tlhano tse tsotlhe tsa thuto eno di ne tsa kganediwa. Kwa bokhutlong, PKLB e ne ya nna mofuta wa ditsadiso tsa F1 o o diragatsang go gaisa, go ikaegilwe ka tiragatso mabapi le kgolo, FCR, tshenyegelo ya go tsadisa, kumo, boleng jo bo kwa godimo jwa dikgapetla tsa mae tse di babalesegileng, bokgoni jwa ikonomi le boikgethelo jwa modirisi (dikgapetla tsa mae tse di tshetlha le mmala wa tlhae). / Agriculture and Animal Health / Ph. D. (Agriculture)
|
7 |
Generic design and investigation of solar cooling systemsSaulich, Sven January 2013 (has links)
This thesis presents work on a holistic approach for improving the overall design of solar cooling systems driven by solar thermal collectors. Newly developed methods for thermodynamic optimization of hydraulics and control were used to redesign an existing pilot plant. Measurements taken from the newly developed system show an 81% increase of the Solar Cooling Efficiency (SCEth) factor compared to the original pilot system. In addition to the improvements in system design, new efficiency factors for benchmarking solar cooling systems are presented. The Solar Supply Efficiency (SSEth) factor provides a means of quantifying the quality of solar thermal charging systems relative to the usable heat to drive the sorption process. The product of the SSEth with the already established COPth of the chiller, leads to the SCEth factor which, for the first time, provides a clear and concise benchmarking method for the overall design of solar cooling systems. Furthermore, the definition of a coefficient of performance, including irreversibilities from energy conversion (COPcon), enables a direct comparison of compression and sorption chiller technology. This new performance metric is applicable to all low-temperature heat-supply machines for direct comparison of different types or technologies. The achieved findings of this work led to an optimized generic design for solar cooling systems, which was successfully transferred to the market.
|
Page generated in 0.0396 seconds