Spelling suggestions: "subject:"effluent"" "subject:"affluent""
351 |
THE EFFECT OF WASTEWATER EFFLUENT ON THE GUT CONTENT MICROBIOME OF RAINBOW DARTER (ETHEOSTOMA CAERULEUM)Restivo, Victoria January 2020 (has links)
MSc Thesis - The effect of wastewater effluent on the gut microbiome of rainbow darter / The microbiome plays an important role in host physiology and can be influenced by species, diet, and environment. Municipal wastewater effluent contains a mixture of chemicals including antibiotics and antimicrobials that may affect the gut microbiome of fish living downstream of these discharges. Thus, this study examines the effect of wastewater treatment plant (WWTP) effluent on the gut microbiome of wild rainbow darter (Etheostoma cearuleum), and examines how the gut microbiome of wild fish changes in the lab.
Fish were collected from sites upstream and downstream of 2 major WWTPs along the central Grand River and gut contents were aseptically sampled. After extracting gDNA, nested PCR of the V3-V4 region of the 16S rRNA gene, and Illumina sequencing were performed. The gut microbiome of exposed fish had increased bacterial diversity and was dominated by Proteobacteria, which has been linked to altered health outcomes in mammals.
Next, rainbow darters were collected from a reference site on the Grand River. Fish were sampled in the field, after a 14 day lab acclimation, and after a 28 day exposure to environmental stressors (WWTP effluent or triclosan, an antimicrobial found in WWTP effluent). Surprisingly, there were no changes in the microbiome after exposure to environmental stressors. Major changes were observed between the field and laboratory fish suggesting that environment and diet are important factors influencing the gut microbiome. Changes in the gut microbiome continued up to 42 days in the lab, indicating longer acclimation periods may be needed.
This study showed that effluents altered the gut microbiome of fish in the field, but not in the laboratory for unknown reasons. Laboratory studies indicated that transitioning to a new environment may require greater than 14 days before achieving a stable microbiome. / Thesis / Master of Science (MSc) / Wastewater is the largest source of pollution affecting Canada’s aquatic ecosystems; effluents contain antibiotics and antimicrobials that can affect fish and other aquatic life. The gut microbiome of fish is influenced by host species, its diet, and the environment, and thus contaminants released via wastewater effluents may alter the gut microbiome of fishes in receiving waters. This study found that the gut microbiota of rainbow darter fish exposed to wastewater effluents in the central Grand River (Waterloo/Kitchener, Ontario) were dominated by Proteobacteria and had increased diversity. Wild fish transitioned to the lab were dominated by Firmicutes and had decreased bacterial diversity in the gut compared to those in the wild. Altogether, these results suggest that wild fish exposed to wastewater effluents had altered gut microbiomes; transitions to new environments and laboratory acclimation periods are important considerations when studying the fish gut microbiome.
|
352 |
Bioflocculation: Implications for Activated Sludge Properties and Wastewater TreatmentMurthy, Sudhir N. 10 August 1998 (has links)
Studies were conducted to determine the role of bioflocculation in the activated sludge unit processes. Laboratory and full-scale studies revealed that bioflocculation is important in determining settling, dewatering, effluent and digested sludge properties (activated sludge properties) and may be vital to the function of all processes related to the above properties. In these studies, it was shown that divalent cations such as calcium and magnesium improved activated sludge properties, whereas monovalent cations such as sodium, potassium and ammonium ions were detrimental to these properties. The divalent cations promoted bioflocculation through charge bridging mechanisms with negatively charged biopolymers (mainly protein and polysaccharide). It was found that oxidized iron plays a major role in bioflocculation and determination of activated sludge properties through surface interactions between iron and biopolymers. Oxidized iron was effective in removing colloidal biopolymers from solution in coagulation and conditioning studies. The research included experiments evaluating effects of potassium and ammonium ions on settling and dewatering properties; effects of magnesium on settling properties; effects of sodium, potassium, calcium and magnesium on effluent quality; effect of solids retention time on effluent quality; and evaluation of floc properties during aerobic and thermophilic digestion. A floc model is proposed in which calcium, magnesium and iron are important to bioflocculation and the functionality of aeration tanks, settling tanks, dewatering equipment and aerobic or anaerobic digesters. It is shown that activated sludge floc properties affect wastewater treatment efficiency. / Ph. D.
|
353 |
Two Cost Analyses in Resource Economics: The Public Service Costs of Alternative Land Settlement Patterns and Effluent Allowance Trading in Long Island SoundSpeir, Cameron Lindsey 08 February 2000 (has links)
This study offers two cost analyses to inform public policy decisions on the use of land and water resources. The first presents some public service costs associated with different spatial forms of land development. The second cost analysis presents costs associated with three different policy options for meeting water quality goals in Long Island Sound.
The objective the first analysis is to determine the cost to local governments of providing water distribution and wastewater collection services to alternative spatial forms of residential development. Components of spatial form are explicitly defined in terms of lot size, distance and tract dispersion. An engineering cost model is used to determine the water and sewer costs to three sets of hypothetical land settlement scenarios. Each set shows the effect of one component of spatial form on cost.
The results show that smaller lots, shorter distances between existing centers and less tract dispersion reduce public water and sewer costs. Lot size is found to have the most pronounced effect on water and sewer cost. Some policy options for reducing the public service costs associated with development are considered.
The objective of the second cost analysis is to analyze the cost implications of a nitrogen allowance trading system for wastewater treatment plants in Connecticut. Effluent allowance trading involves the transfer of pollution control responsibility between pollution sources. Effluent allowances are the right to discharge a given quantity of waste into the environment over a given time period. Allowance trading has been proposed as a way of reducing pollution control costs, encouraging innovative pollution prevention techniques and more quickly achieving water quality goals.
Long Island Sound, a major estuary in the northeastern United States, experiences chronically low dissolved oxygen levels. Excessive nitrogen loads from anthropogenic activities in the Sound watershed have been identified as the cause of the oxygen problem. The state of Connecticut is examining the possibility of introducing an effluent allowance trading system in order to reduce the cost of achieving required reductions in nitrogen discharge.
A linear programming model is used to predict trading outcomes and allowance prices. The total cost of achieving a nitrogen load cap is calculated under three administrative approaches. The first approach is a uniform reduction requirement where all plants are required to reduce discharge by the same proportion. The second approach is an administrative reallocation of waste load where a regulatory agency assigns control responsibility based on the agency's understanding of relative costs. The third approach is a flexible effluent allowance trading system. The results will show that a trading program offers cost savings over traditional regulatory approaches, demonstrate the potential for further cost savings from pollution prevention activities and estimate the cost savings that would result from including nonpoint sources in the overall nitrogen reduction strategy. / Master of Science
|
354 |
Effects of sewage treatment plant effluents on mollusks and fish of the Clinch River in Tazewell County, VirginiaGoudreau, Stephanie E. 22 June 2010 (has links)
The Clinch River is renown for its rich mollusk and fish assemblages, including many endemic species. New sewage treatment plants (STP's) have recently been constructed along the Clinch River in Virginia, raising concern because of the disappearance of mollusks below existing STP's. Field and laboratory studies were conducted to determine mollusk and fish distribution in proximity to two STP's in Tazewell County, and the tolerance of two mollusk species to mono chloramine and unionized ammonia, the major toxicants in domestic STP effiuent.
River reaches up to 3.75 km downstream of the STP outfalls at Tazewell and Richlands were depauperate of mussels. Tolerance to effluent seemed to vary among snails, sphaeriid clams, and the Asiatic clam <i>Corbicula flumineaK</i>. After an initial toxic zone below the Tazewell outfall, abundance of fish appeared to increase by 0.45 km below the outfall. The effluent at Richlands eliminated intolerant species, and more tolerant species were present as far as 0.45 km below the outfall.
Laboratory bioassays with glochidia of <i>Villosa nebulosa</i> resulted in 24-h EC₅₀ and LC₅₀ values of 0.042 and 0.084 mg/L monochloramine, respectively, and 24-h EC₅₀ and LC₅₀values of 0.237 and 0.284 mg/L unionized ammonia, respectively. Glochidia rank among the most sensitive invertebrates in their tolerance to these toxicants. The snail <i>Pleurocera unciale unciale</i> was moderately sensitive, with 96-h LC₅₀ values of 0.252 mg/L mono chloramine and 0.742 mg/L unionized ammonia. Comparison of monochloramine and unionized ammonia concentrations monitored at 0.10 km below the outfalls indicated that mono chloramine was the major toxicant likely affecting fauna. / Master of Science
|
355 |
Impacts of aquaculture effluent on water quality and biotic communities in Virginia headwater streamsSelong, Jason H. 25 August 2008 (has links)
Of eleven commercial and state trout farms surveyed in Virginia, five farms were selected for intensive examination of effluent impacts during Fall 1994 and Summer 1995 to maximize effects of stream low flows and high temperature. Substrate embeddedness increased significantly downstream, but effluent settleable solids concentrations were always less than 0.1 ml/L. Total ammonia and nitrite levels increased downstream 0.1 - 0.7 mg/L and 0.003 - 0.01 mg/L respectively, but were well below recommended thresholds for lethal exposure. Dissolved oxygen levels were reduced downstream, but were typically > 6.5 mg/L. Effluent water temperatures, pH, nitrate, and total phosphorus concentrations did not differ from upstream levels. Downstream water quality was contingent on feed loading rates and the use of effluent settling ponds. Periphyton were enhanced up to tenfold (58 mg/cm² chlorophyll <i>a</i>) downstream of farms, but enrichment was localized to within 400 m. The richness and abundance of sensitive macroinvertebrate taxa (mayflies, stoneflies, and caddisflies) were reduced downstream and pollution-tolerant non-insect taxa (isopods and gastropods) increased. EPA Rapid Bioassessment Protocol (RBP) reflected moderately-impaired water quality downstream at farms A and C, and only slightly or unimpaired water quality at the other farms. The Index of Biotic Integrity (IBI), based on fish community metrics, did not correspond to the RBP, and reflected poor water quality at C and D. Low fish species richness and abundance in these headwater streams limited the usefulness of the IBI. The proposed general discharge permit for aquaculture in Virginia is discussed and trout farm management and design recommendations are presented. / Master of Science
|
356 |
Effect of Solids Retention Time on Activated Sludge Properties and Effluent QualityPhillips, Gary Pelham 09 September 1998 (has links)
The effect of solids retention time (SRT) or sludge age on activated sludge properties and effluent quality was investigated using laboratory scale reactors. It was found that an increase in SRT resulted in an increase in effluent solution polysaccharide, with the < 3,000 daltons (3K) size fraction contributing up to 68 percent of solution polysaccharides. The feed consisted of low molecular weight, readily degradable protein, suggesting that the observed increases in protein and polysaccharide were due to increased release of exocellular microbial product (EMP). The increase in solution protein and polysaccharide resulted in an increase in effluent chemical oxygen demand (COD). The increase in effluent COD was not accompanied by a similar increase in effluent biological oxygen demand (BOD), indicating that the EMPs released were resistant to biodegradation. At the highest SRT, the resistance to shear decreased and the capillary suction time (CST) increased. Following an initial increase, the sludge volume index (SVI) decreased at higher SRT. / Master of Science
|
357 |
Performance Evaluation of a Low Impact Development Retrofit for Urban Stormwater TreatmentLe Bel, Paul David 18 April 2013 (has links)
The goal of Low Impact Development (LID) is to mimic the pre-development hydrologic regime of a catchment through infiltration, filtration, storage, evaporation, and detention of post-development runoff using small-scale hydrologic controls close to the source. A LID facility located in Northern Virginia was examined for pollutant removal and hydrologic performance. The treatment train included four in-line grass swales followed by a bioretention cell with a gravel base. The facility retained 85% of the rainfall. Influent and effluent pollutant loads were calculated using three common substitution methods for datasets censored by values below the analytical detection limit. The Summation of Loads (SOL) method was used to facilitate understanding of how data censoring affected performance results when substitution methods were used. The SOL analysis showed positive removal performance for most nutrient species, sediment, oxygen demanding substances, selected trace metals and total petroleum hydrocarbons. Negative performance was observed for oxidized nitrogen, total dissolved solids and oil & grease. LID facility influent and effluent loads were also compared using the Effluent Probability Method (EPM). The EPM analysis showed statistically significant (p d 0.05) pollutant load removal performance over the entire range of sampled events for total suspended solids, total phosphorus, total nitrogen, total Kjeldahl nitrogen, ammonia nitrogen, chemical oxygen demand, copper, zinc and alkalinity. EPM analysis did not show significant removals of oxidized nitrogen, total dissolved solids, orthophosphate phosphorus and hardness. / Master of Science
|
358 |
Performance Analysis of an Urban Stormwater Best Management Practice RetrofitSimko, Andrew Jack 22 September 2014 (has links)
Historically, the primary objective of traditional stormwater best management practices (BMPs) was to attenuate peak runoff discharges from urban areas. There has been growing demand to construct BMPs that improve stormwater runoff quality to reduce pollutant loading into downstream water bodies. A BMP located in Herndon, Virginia was retrofitted in 2009. Previously a dry detention pond, the new BMP design contains permanent wet pools as well as elements of Low Impact Development practices. A performance analysis was conducted on the retrofit to determine if the BMP was removing pollutants from stormwater runoff. Two mass-based methods were utilized for the performance analysis: the Summation of Loads Method and Effluent Probability Method. The Kaplan-Meier method and Robust Regression on ordered statistics (ROS) were used to make it possible to include censored datasets in the analysis. Analysis with the SOL method showed removal of suspended sediment, nitrogen, iron, and copper. Export of dissolved solids, phosphorus, organic carbon, and manganese was observed. The results of the Effluent Probability Method showed statistically significant reductions of sediment, iron, and copper across the entire range of monitored storm event sizes (p-value≤0.05). There was no statistical difference between the influent and effluent loads of nitrogen. Negative performance of dissolved solids, phosphorus, organic carbon, and manganese were observed for the entire range of monitored storm event sizes. The results of both methods indicated that the BMP retrofit is effectively removing sediment but failing to achieve significant nutrient reductions. This may be due to the creation of anoxic conditions from the oxygen demand of the micropool sediments and microbial degradation of vegetation within the BMP. Removal of the sediment bed and harvesting of the vegetation would likely improve the performance of the BMP. / Master of Science
|
359 |
An Ecotoxicological Evaluation of Active Coal Mining, Sedimentation and Acid Mine Drainage in Three Tributaries of the Leading Creek Watershed, Meigs County, OhioLatimer, Henry Augustus II 20 May 1999 (has links)
Three streams (Parker Run, Little Leading Creek and Thomas Fork) in the Leading Creek watershed, Meigs County, Ohio were impacted by active coal mining, agricultural and abandoned mined land sedimentation and acid mine drainage (AMD), respectively. An ecotoxicological evaluation was performed using physical (water chemistry and sediment depth analyses), toxicological (acute water column, chronic sediment and 35-day in situ toxicity tests) and ecological (benthic macroinvertebrate community sampling) parameters. Persistent acute toxicity (mean 48-hr LC50 of 30.3% to C. dubia) due to low pH (mean of 5.4) and high concentrations of dissolved metals (ex: Al ~ 10 mg/L) were responsible for the significantly depressed benthic macroinvertebrate community sampled in Thomas Fork. Heavy sedimentation (>30 inches), with no associated toxins, significantly decreased both abundance and diversity of benthic macroinvertebrates in Little Leading Creek. High concentrations of sodium (mean of 910 mg/L), TDS (mean of 3,470 mg/L), and periodic acute water column toxicity (mean C. dubia survival of 62% in 100% sample) were most likely responsible for the depressed benthic macroinvertebrate community observed in Parker Run. In ranking the severity of impacts, AMD was first followed by non-toxic sedimentation, and active coal mining ranked last.
A catastrophic coal slurry spill significantly impacted the benthic macroinvertebrate community in Parker Run in April 1997. Six sampling stations were established to monitor the recovery of the stream's benthic community and evaluate any impact the active coal mine effluent had on the recovery time of the community. The effluent, characterized by high concentrations of TDS (~4,200 mg/L), significantly hindered benthic macroinvertebrate community recovery in Parker Run. The benthic community at the initial spill site, which was above the active mine effluent, recovered to levels measured at an upstream reference within 4-9 months. Benthic communities impacted by both the slurry spill and the effluent still had not recovered 16 months after the spill. Concentrations of TDS measured in the stream were significantly correlated (r = -0.765 and -0.649 respectively) with both EPT richness and percent C. dubia survival in water column toxicity tests.
Laboratory analysis of synthetic coal mine effluent, similar in composition to that of the Parker Run effluent, was performed to determine toxicity thresholds for sodium, sulfate, TDS and conductivity. Acute toxicity thresholds were found for sodium (between 900 and 1,000 mg/L), TDS (4,200 and 6,400 mg/L), and conductivity (5,000 and 6,200 µmhos/cm). It was also determined that any toxic contribution of sulfate in solution with high concentrations of sodium (~1,000 mg/L) and/or TDS (~4,200 __ 6,400 mg/L) was secondary to that of the toxic effect of sodium or TDS in that solution. / Master of Science
|
360 |
Evaluation of spray drying setup for Palm Oil Mill Effluent : A story of Malaysian Palm oil millingHagelin, Emil, Persson, Felix January 2024 (has links)
The Sungai Terah Palm Oil Mill was tasked with creating a spray drying process for drying of palm oil mill effluent based on a study conducted byThe Malaysian Palm Oil Board. The process does not work and the goal of this report was to identify the problem and recommend possible changes.This has been done through conducting a trial run, a literature study and performing thermodynamic and kinetic calculations. The results show that to reach the goal of drying 14 litres of effluent per minute the process needs a minimum of 633 kW through an increased throughput of heated air to 4.7m3/s. Additionally, the height of the drying chamber is estimated to need an increase to 8 metres. Other suggestions are also presented. / Palmoljefabriken Sungai Terah Palm Oil Mill fick i uppdrag att skapa en process som använder en sprejtork för att torka utsläppet från palmoljeproduktionen, baserat på en studie från The Malaysian Palm Oil Board. Processen fungerar inte och målet med denna rapport var att identifiera problemet och rekommendera möjliga lösningar. Detta har gjorts genom att genomföra ett fabriksexperiment, en litteraturstudie och termodynamiska och kinetiska beräkningar. Resultaten visar att processen kräver minst 633 kW genom ett luftflöde på 4.7 m3/s för att uppnå målet av att torka 14 liter utsläppper minut. Dessutom har höjden på sprejtorkens kammare uppskattats behöva öka till 8 meter. Andra förslag ges också.
|
Page generated in 0.0464 seconds