• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 24
  • 12
  • 2
  • Tagged with
  • 73
  • 43
  • 34
  • 32
  • 24
  • 24
  • 24
  • 21
  • 13
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Vapor Phase Growth of ZnO Single Crystals/Thin Films and Attempts for p-type Doping

Zhang, Xi 12 May 2014 (has links) (PDF)
The growth of ZnO single crystals and ZnO thin films on Si substrates by an open-system vapor phase method was studied in this thesis. The as-grown ZnO single crystals were investigated by means of photoluminescence (PL). Two unique emissions were observed in virgin and hydrogenated crystals. The up-to-now attempts for the p-type doping of ZnO were summarized and our doping studies were performed using nitrogen and antimony. The seed-free and open-system vapor phase method is a simple and low cost approach to grow good quality ZnO single crystals. The growth parameters, including flow rates of N2, H2, O2, and growth temperatures, have various influences on the crystal growth, and also on the optical properties of the as grown crystals. The as-grown crystals are c-axis oriented needle crystals, and the crystals typically have a maximum length of 40 mm and a maximum diameter of 1 mm. The needle-shaped crystals are n-type with main donors due to Al, Ga, and In impurities, as determined from the PL spectra. Two unidentified PL emission lines (P1 at 3.3643 eV and P2 at 3.3462 eV) are observed in our vapor phase grown ZnO single crystals. P1 is attributed to the recombination of an exciton bound to a shallow donor,which has a binding energy of 42.2 meV. Hydrogenation of the as-grown ZnO single crystal leads to the appearance of the P2 line and a great reduction of the P1 line. Subsequent isochronal annealing in the ambient atmosphere leads to gradual reduction of P2 and the reappearance of P1. The PL measurements indicate that hydrogen is involved in the defect origins of the P2 line. ZnO thin films were deposited on Si substrates by the vapor phase method. Three different types of configurations with alternative source materials and oxidizers were employed and compared. It is demonstrated that, methods with lower growth temperatures are easier to deposit homogenous ZnO films on Si substrate. Donor-acceptor-pair (DAP) transition at 3.245 eV and its phonon replicas were observed in the PL spectra of the thin films, which are grown by the hydrogen-free vapor phase method. The appearance of DAP transition indicates the presence of acceptor in the films. The long-standing challenge of p-type doping in ZnO is mainly attributed to the low valence band maximum (VBM) at the absolute energy scale, the spontaneous formation of compensating defects and the lack of appropriate acceptors with small ionization energy. Two attempts for the p-type doping of ZnO were performed by nitrogen diffusion into ZnO single crystals from plasma after the growth or by in-situ doping antimony during the growth of ZnO films. No hole conductivity could however be achieved in our doped samples. / In dieser Arbeit wurde das Wachstum von ZnO-Einkristallen und Dünnfilmschichten auf Si durch chemische Gasphasenabscheidung in einem offenen System untersucht. Die hergestellten ZnO-Einkristalle wurden mit Photolumineszenzmessungen (PL) untersucht. Es konnten sowohl in unbehandelten als auch in mit Wasserstoff behandelten Proben zwei charakteristische Linien beobachtet werden. Sowohl die bisherigen Versuche zur p-Typ Dotierung von ZnO als auch die in dieser Arbeit durchgeführten Versuche mit Stickstoff und Antimon werden zusammengefasst und präsentiert. Die Keimkristall-freie Gasphasenabscheidung (CVD) in offenen Systemen ist eine einfache und kostengünstige Methode zur Herstellung von qualitativ hochwertigen ZnO-Einkristallen. Die Wachstumsparameter, einschließlich der Flussraten von N2, H2 und O2 sowie der Wachstumstemperatur beeinflussen das Kristallwachstum sowie die optischen Eigenschaften der hergestellten Kristalle. Die hergestellten Kristalle wachsen typischerweise als entlang der c-Achse orientierte Nadeln mit Längen von bis zu 40 mm und Durchmessern von bis zu 1 mm. Die nadelförmigen Kristalle besitzen eine n-Typ Dotierung, welche hauptsächlich durch Verunreinigung mit Al, Ga und In verursacht wird. Zwei bisher nicht identifizierte PL-Linien (P1 bei 3,3643 eV und P2 bei 3,3462 eV) wurden in den hergestellten Kristallen beobachtet. P1 wird der Rekombination von Exzitonen an flachen Donatoren mit einer Bindungsenergie von 42,2 meV zugeordnet. Eine Wasserstoffbehandlung der hergestellten Kristalle führt zum Erscheinen der P2-Linie und einer starken Unterdrückung der P1-Linie. Anschließende isochronische Temperung in Luft führt zu einer schrittweisen Reduzierung der Intensität der P2-Linie und zu einer Verstärkung der P1-Linie. Photolumineszenzmessungen weisen auf eine Korrelation von P2 mit Wasserstoff hin. Zusätzlich wurden mit der CVD-Methode dünne ZnO-Schichten auf Si-Substraten abgeschieden. Drei unterschiedliche Konfigurationen mit verschiedenen Ausgangsmaterialien (ZnO-Pulver bw. Zn-Pulver) und verschiedenen Oxidationsmitteln (O2 bzw. Wasser) wurden untersucht und verglichen. Es wird gezeigt, dass mit den Konfigurationen mit geringerer Wachstumstemperatur am einfachsten homogene ZnO-Schichten auf Si abgeschieden werden können. Ein Donator-Akzeptor-Paar-Übergang (DAP) bei 3,245 eV und die dazugehörigen Phononenrepliken wurden in den Schichten beobachtet, welche in einer Wasserstoff-freien Konfiguration abgeschieden wurden. Diese DAP-Übergänge sind ein Hinweis auf die Anwesenheit von Akzeptoren. Die seit langem bestehende Herausforderung der p-Typ-Dotierung von ZnO hat ihre Wurzeln hauptsächlich in dem niedrig liegenden Valenzbandmaximum (VBM) auf der absoluten Energieskala, der spontanen Bildung von kompensierenden Defekten sowie dem Mangel an geeigneten Akzeptoren mit geringer Ionisierungsenergie. Zwei Versuche zur p-Typ-Dotierung von ZnO durch Behandlung der Kristalle mit N-Plasma bzw. durch in-situ Dotierung mit Sb während des Kristallwachstums wurden durchgeführt. Allerdings konnte damit keine nachweisbare Löcherleitung in den behandelten Proben erreicht werden.
42

Chemische Aspekte elektronischer und phononischer Feinabstimmung in thermoelektrischen Materialien

Wagner-Reetz, Maik 01 December 2014 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung neuartiger thermoelektrischer (TE) Materialien, unter Berücksichtigung einer effizienten Präparation in Verbindung mit sorgfältiger chemischer Charakterisierung und physikalischer Messung. Als Grundvoraussetzung für eine TE aktive Verbindung muss diese ein Halbleiter sein, dessen Ladungsträgerkonzentration durch geeignete Substitution justiert werden kann. Weiterhin sollte eine starke Steigung der elektronischen Zustandsdichte am Fermi-Niveau vorhanden sein, um hohe Seebeck-Koeffizienten zu erhalten. Schwere Elemente in einer möglichst komplizierten Kristallstruktur sollten für eine relativ geringe thermische Leitfähigkeit von Vorteil sein. RuIn3 und seine Substitutionsvarianten erfüllen diese Voraussetzungen. Eine Fest-Flüssig-Reaktion mit anschließendem Spark-Plasma-Sintern (SPS) zur Präparation polykristalliner Materialien lieferte phasenreine Produkte. Binäres RuIn3 ist ein Halbleiter mit einer Bandlücke von 0,45 eV, welcher in Abhängigkeit von der Temperatur große negative und positive Seebeck-Koeffizienten zeigt. Die thermische Leitfähigkeit ist mit κmin = 3,8(8) W K-1 m-1 relativ gering. Eine genaue Einstellung der Ladungsträgerkonzentration kann durch Substitution von In mit Sn oder Zn erfolgen, wodurch ausschließlich negative (Sn) oder positive (Zn) Seebeck-Koeffizienten vorliegen. Gleichzeitig wird die thermische Leitfähigkeit um ca. 50 % im Vergleich zu binärem RuIn3 gesenkt. Die Substitution in RuIn3-xSnx und RuIn3-xZnx (x = 0,10) geht mit einem Halbleiter-Metall-Übergang einher, welcher durch Messungen des elektrischen Widerstands verifiziert wurde. Analysen mittels wellenlängendispersiver Röntgenspektroskopie zeigen eine gute Übereinstimmung der nominellen und experimentellen Zusammensetzung für die Sn-Substitution und einen vergleichsweise geringen Zn-Gehalt. RuO2-Verunreinigungen in kommerziellem Ru-Pulver sind die Ursache für kleine Nebenphasenanteile von In2O3 in RuIn3-xSnx und ZnO in RuIn3-xZnx. Die dadurch ablaufenden Reduktionen und die Redoxpotentiale der Elemente und Verbindungen können mit den Gitterparametern der Substitutionsvarianten und dem Homogenitätsbereich der Stammverbindung RuIn3 in Einklang gebracht werden. Zur Eliminierung der RuO2-Verunreinigungen wurde eine Wasserstoff-Reduktionsapparatur entwickelt. Damit konnten die Sauerstoffverunreinigungen im Ru-Pulver vollständig entfernt werden. Mit diesem gereinigten Ausgangsmaterial wurden die mit Zn substituierten Spezies erneut synthetisiert. Es zeigt sich eine sehr gute Übereinstimmung zwischen der nominellen und experimentellen Zusammensetzung für die Zn-Substitution unter Nutzung des reduzierten Ru-Pulvers. Die Substitutionen der In-Position mit Zn führten zu maximalen TE Gütewerten von ZTmax = 0,76(19) in RuIn2;975Zn0;025. Neben Optimierungen der Ladungsträgerkonzentration spielen Veränderungen des Gefüges für die Eigenschaften eines TE Materials eine zentrale Rolle. Zur Ermittlung der Auswirkungen des Gefüges auf die TE Eigenschaften wurden große Einkristalle von RuGa3 (isostrukturell zu RuIn3) durch ein modifiziertes Bridgman-Verfahren gezüchtet und mit polykristallinem Material verglichen, welches aus diesem Einkristall hergestellt wurde. Gitterparameter und chemische Zusammensetzung der untersuchten RuGa3-Proben weisen keinerlei Variation auf. Die TE Eigenschaften zeigen im Hochtemperaturbereich (T = 300 K) keine signifikanten Unterschiede. In der Messung des Seebeck-Koeffizienten des RuGa3-Einkristalls lässt sich bei tiefen Temperaturen ein scharfes Minimum beobachten, welches in der polykristallinen Probe nicht auftritt. Analog dazu ist die thermische Leitfähigkeit des Einkristalls durch ein deutliches Maximum gekennzeichnet, welches in der polykristallinen Probe nahezu vollständig zusammenfällt. Die zusätzlichen Korngrenzen im Gefüge des polykristallinen Materials wirken als Streuzentren für Phononen, welche im entsprechenden RuGa3-Einkristall nicht vorhanden sind. Die intrinsischen Eigenschaften von RuGa3 mit hoher Wärmeleitfähigkeit in Verbindung mit niedrigem Seebeck-Koeffizienten bei tiefen Temperaturen könnten mit dem Phonon-drag-Effekt erklärt werden. Darauffolgend wurde Ruthenium durch Eisen vollständig ersetzt und der momentan viel untersuchte Halbleiter FeGa3 (isostrukturell zu RuIn3) studiert. Die Präparation polykristalliner Proben wurde analog zu RuIn3 und RuGa3 mit einer Fest-Flüssig-Reaktion und anschließender SPS-Behandlung durchgeführt. Aufgrund fehlender Untersuchungen zu einem geeigneten Substitutionselement wurden die Substitutionsvarianten FeGa3-xEx (E = Al, In, Zn, Ge; x = 0,50) präpariert. Die festen Lösungen FeGa3-xEx mit E = Al, In, Zn zeigen keine Verbesserung der TE Aktivität. Für FeGa3-xGex konnten aus chemischer und physikalischer Sicht die besten Ergebnisse erzielt werden. Systematisch sinkende c-Gitterparameter bei steigender Substitutionskonzentration gehen mit einer sehr guten Übereinstimmung von nomineller und experimenteller Zusammensetzung einher. Mit steigendem Ge-Gehalt wird der elektrische Widerstand und die thermische Leitfähigkeit gesenkt. Für die feste Lösung FeGa2;80Ge0;20 wird eine maximale TE Aktivität ZTmax = 0,21(5) erreicht. Für Untersuchungen zu Gefügeeinflüssen in FeGa3 wurden Einkristalle mit polykristallinem Material verglichen. Dabei weisen die Gitterparameter und die chemische Zusammensetzung der Einkristalle und des polykristallinen Materials im Bereich des experimentellen Fehlers keine Unterschiede auf. Die TE Eigenschaften bei hohen Temperaturen (T = 400 K) zeigen keine signifikanten Unterschiede zwischen poly- und einkristallinen Proben. Im Gegensatz dazu stehen Messungen des Seebeck-Koeffizienten und der thermischen Leitfähigkeit bei tiefen Temperaturen. Bei Temperaturen unter 20 K sind die Wärmeleitfähigkeiten der Einkristalle durch starke Maxima geprägt (κ[001](Czochralski) < κ[100](Czochralski) < κ(Ga-Fluss)). Im polykristallinen Material mit der höchsten Defekt-Konzentration (Korngrenzen) ist dieses Signal durch viele zusätzliche Streuzentren für Phononen fast vollständig unterdrückt. Der Seebeck-Koeffizient der Einkristalle und des polykristallinen Materials ist im gleichen Temperaturbereich und in gleicher Reihenfolge ebenfalls durch starke Signale gekennzeichnet. Für die ungewöhnlich niedrigen Seebeck-Koeffizienten wurden magnetische oder strukturelle Phasenübergänge durch Messungen der magnetischen Suszeptibilität und der Wärmekapazität ausgeschlossen. Theoretische Berechnungen der elektronischen Eigenschaften auf Basis von ermittelten Ladungsträgerkonzentrationen aus Hall-Messungen zeigen, dass die extremen Seebeck-Koeffizienten in FeGa3 nicht elektronischen Ursprungs sein können, weshalb Elektronen-Korrelation ausgeschlossen wurde. Die gesamte thermische Leitfähigkeit ist bei Temperaturen kleiner 400 K nahezu ausschließlich durch den Anteil des Gitters bestimmt. Demzufolge wurde der Phonon-drag-Effekt als Ursache für die ungewöhnlich niedrigen Seebeck-Koeffizienten in FeGa3-Einkristallen von bis zu -16.000(800) µV K-1 begründet. Im Rahmen dieser Arbeit wurde gezeigt, dass die kontrollierte Durchführung von chemischen Reaktionen in Kombination mit einer gründlichen chemischen Charakterisierung eine entscheidende Rolle bei der effizienten Präparation von (un-)bekannten Verbindungen und Materialien spielt.
43

3d- und 4f-Korrelationen in quaternären Eisenpniktiden: der Sonderfall CeFeAs1-xPxO

Jesche, Anton 22 August 2011 (has links) (PDF)
Die Legierungsserie CeFeAs1−xPxO bietet die Möglichkeit, eine außergewöhnliche Vielfalt unterschiedlicher Grundzustände mit starken Korrelationen der 3d- und der 4f-Elektronen zu untersuchen. CeFePO ist an der Grenze zwischen einem paramagnetischen und einem ferromagnetischen Ce-Zustand und zeigt starke 4f-Korrelationen, die zu Schwere-Fermionen-Verhalten führen, während Fe unmagnetisch ist. Im Gegensatz dazu sind die Eigenschaften von CeFeAsO durch die 3d-Korrelationen des Fe dominiert, die zu antiferromagnetischer Ordnung unterhalb von T_N(Fe) = 145K führen, während sich Ce in einem stabilen dreiwertigen Zustand befindet und unterhalb von T_N(Ce) = 3.7K ebenfalls antiferromagnetisch ordnet. Man erwartet deshalb mindestens zwei kritische Punkte, an denen die magnetische Ordnung unterdrückt wird. Hier sollte insbesondere geklärt werden, ob bei diesen kritischen Konzentrationen Quantenphasenübergänge auftreten, bei denen die Ordnungstemperatur zu T = 0K verschoben ist und in denen die Ursache von Nicht-Fermi-Flüssigkeitsverhalten und unkonventioneller Supraleitung gesehen wird. Grundlage für die Untersuchungen war zunächst die Züchtung qualitativ hochwertiger Einkristalle hinreichender Größe, was im Rahmen dieser Arbeit erstmalig gelungen ist. Hierzu wurde eine Sn-Flux Methode optimiert, mit der plättchenförmige Einkristalle mit Abmessungen von typischerweise 1mm x 1mm x 0.1mm und Massen bis 0.6mg erhalten werden konnten. Zur Bestimmung struktureller Parameter kamen Röntgenbeugung, energiedispersive Röntgenspektroskopie und chemische Analyse zum Einsatz. Physikalische Eigenschaften wurden vor allem durch Messungen der Spezifischen Wärmekapazität, der Magnetisierung und des elektrischen Widerstandes im Temperaturbereich T = 0.35 − 300K untersucht. Die antiferromagnetische Ordnung von Fe in CeFeAsO ist mit einer orthorhombischen Verzerrung verbunden, die bei einer etwas höheren Temperatur von T_0 = 151K stattfindet. Diese Phasenübergänge sind von besonderem Interesse, da ihre Unterdrückung zur Ausbildung von Hochtemperatur-Supraleitung in den Eisenpniktiden führt, ihr Wechselspiel aber nicht vollständig verstanden ist. Sie unterteilen die Temperaturabhängigkeit des elektrischen Widerstandes ρ(T) von CeFeAsO in zwei Bereiche. In der paramagnetischen tetragonalen Phase nimmt ρ(T) beim Abkühlen von Raumtemperatur aus bislang ungeklärter Ursache zunächst leicht zu. Erst mit Einsetzen der orthorhombischen Verzerrung bei T_0 kehrt sich die Temperaturabhängigkeit um und ρ(T) nimmt mit sinkender Temperatur ab, wobei die Abnahme bei T_N(Fe) nochmals stärker wird und bis zu tiefsten Temperaturen metallisches Verhalten beobachtet wird. Dass sich CeFeAsO somit nicht unmittelbar an der Grenze zu einem Mott-Isolator befindet, wie es in Anlehnung an die Kuprat-Supraleiter zunächst vermutet wurde, und Restwiderstandsverhältnisse von RRR > 10 überhaupt möglich sind, konnte im Rahmen dieser Arbeit erstmalig gezeigt werden. Durch sorgfältige Untersuchung des Temperaturunter- schiedes zwischen T_N(Fe) und T_0 und dem Vergleich mit dotierten und undotierten AFe2As2-Verbindungen konnte ein vereinheitlichtes Bild der Ausgangsverbindungen aller Fe-basierten Supraleiter geschaffen werden. In diesem tritt im Temperaturbereich T_N(Fe) < T < T_0 eine elektronische nematische Phase hervor, deren Existenzbereich durch die magnetische Kopplung entlang der kristallographischen c-Achse und deren Defektabhängigkeit bestimmt ist. Wie alle Substitutionen in RFeAsO-Verbindungen führt die Ersetzung von As durch P auch in CeFeAs1−xPxO zu einer Verringerung von T_N(Fe). Ein quantenkritischer Punkt mit T_N(Fe) --> 0K ist jedoch unwahrscheinlich, da ab einer kritischen Konzentration von x = 0.30 die Signatur der Eisen-Ordnung in ρ(T) zwar merklich schwächer wird, T_N(Fe) ≈ 40K bei weiterer Erhöhung von x aber nicht mehr zu tieferen Temperaturen schiebt. In Proben mit der kritischen Konzentration von x = 0.30 - und nur in diesem Konzentrationsbereich - konnte reproduzierbar ein verschwindender elektrischer Widerstand und damit ein Hinweis auf Supraleitung mit einer Sprungtemperatur von T_SL= 4K gefunden werden. Im Gegensatz zur ’Dom-förmigen’ Abhängigkeit der Sprungtemperatur von der Konzentration eines Fremdatoms in den Phasendiagrammen anderer Fe-basierter Supraleiter nimmt jedoch T_SL in CeFeAs1−xPxO bei weiterer Erhöhung von x nicht zu. Stattdessen wird bei x > 0.30 ein ferromagnetisch geordneter Grundzustand (des Ce) stabilisiert, der mit Supraleitung konkurriert. Die antiferromagnetische Ordnung von Cer in undotiertem CeFeAsO weist typische Merkmale magnetischer Ordnung lokaler Momente auf und impliziert eine Dominanz der RKKY-Wechselwirkung gegenüber einem schwachen Kondo-Effekt. Die Ersetzung von As durch P wirkt als chemischer Druck und stabilisiert somit den unmagnetischen Valenzzustand Ce4+. Trotzdem ist die Ce-Ordnung bei kleinen P-Konzentrationen - im Gegensatz zur Fe- Ordnung - nahezu unverändert vom Verhalten in undotiertem CeFeAsO. Bei der kritischen Konzentration von x = 0.30 tritt überraschend ein plötzlicher Übergang von antiferromagnetischer zu ferromagnetischer Ordnung mit einer Curie-Temperatur von T_C(Ce) = 4K auf, der offensichtlich mit der Unterdrückung der Fe-Ordnung korreliert ist und nicht nur aus einem reinen Volumeneffekt resultiert. Als mögliche Ursache wird eine Umstrukturierung der Fermi-Fläche bei Unterdrückung der Fe-Ordnung betrachtet, die zu einem Vorzeichenwechsel der Austauschkopplung J_ij bei RKKY-Wechselwirkung führt. Bei hohen Phosphor-Konzentrationen sinkt T_C(Ce) und geht bei x = 0.90 von ferromagnetischer zur antiferromagnetischer Ordnung über, wie es bei Annäherung an einen quantenkritischen Punkt bereits in einer Vielzahl ferromagnetischer Systeme beobachtet wurde. In stöchiometrischem CeFePO wurde magnetisch kurzreichweitige Ordnung und Spin-Glas-Verhalten mit einer charakteristischen Temperatur von T_SG= 0.75K gefunden. Der Unterschied zur früher gemachten Beobachtung eines paramagnetischen Grundzustandes resultiert einzig aus Variationen bei der Synthese und ist in strukturellen Parametern nicht nachweisbar - eine für Schwere- Fermionen-Systeme typische Sensitivität! Der zweite kritische Punkt, an dem die Ce-Ordnung verschwinden sollte, liegt also nicht wie zu Beginn erwartet bei hohen P-Konzentrationen, sondern in stöchiometrischem CeFePO. Eine Wärmebehandlung von CeFePO bei T ∼ 800◦C kann zur gezielten Manipulation des Grundzustandes genutzt werden und hat zur Ausbildung von logarithmischer Divergenz der spezifischen Wärmekapazität C/T und damit einem ersten direkten Hinweis auf Quantenkritikalität geführt.
44

Chemische Aspekte elektronischer und phononischer Feinabstimmung in thermoelektrischen Materialien

Wagner-Reetz, Maik 30 September 2014 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung neuartiger thermoelektrischer (TE) Materialien, unter Berücksichtigung einer effizienten Präparation in Verbindung mit sorgfältiger chemischer Charakterisierung und physikalischer Messung. Als Grundvoraussetzung für eine TE aktive Verbindung muss diese ein Halbleiter sein, dessen Ladungsträgerkonzentration durch geeignete Substitution justiert werden kann. Weiterhin sollte eine starke Steigung der elektronischen Zustandsdichte am Fermi-Niveau vorhanden sein, um hohe Seebeck-Koeffizienten zu erhalten. Schwere Elemente in einer möglichst komplizierten Kristallstruktur sollten für eine relativ geringe thermische Leitfähigkeit von Vorteil sein. RuIn3 und seine Substitutionsvarianten erfüllen diese Voraussetzungen. Eine Fest-Flüssig-Reaktion mit anschließendem Spark-Plasma-Sintern (SPS) zur Präparation polykristalliner Materialien lieferte phasenreine Produkte. Binäres RuIn3 ist ein Halbleiter mit einer Bandlücke von 0,45 eV, welcher in Abhängigkeit von der Temperatur große negative und positive Seebeck-Koeffizienten zeigt. Die thermische Leitfähigkeit ist mit κmin = 3,8(8) W K-1 m-1 relativ gering. Eine genaue Einstellung der Ladungsträgerkonzentration kann durch Substitution von In mit Sn oder Zn erfolgen, wodurch ausschließlich negative (Sn) oder positive (Zn) Seebeck-Koeffizienten vorliegen. Gleichzeitig wird die thermische Leitfähigkeit um ca. 50 % im Vergleich zu binärem RuIn3 gesenkt. Die Substitution in RuIn3-xSnx und RuIn3-xZnx (x = 0,10) geht mit einem Halbleiter-Metall-Übergang einher, welcher durch Messungen des elektrischen Widerstands verifiziert wurde. Analysen mittels wellenlängendispersiver Röntgenspektroskopie zeigen eine gute Übereinstimmung der nominellen und experimentellen Zusammensetzung für die Sn-Substitution und einen vergleichsweise geringen Zn-Gehalt. RuO2-Verunreinigungen in kommerziellem Ru-Pulver sind die Ursache für kleine Nebenphasenanteile von In2O3 in RuIn3-xSnx und ZnO in RuIn3-xZnx. Die dadurch ablaufenden Reduktionen und die Redoxpotentiale der Elemente und Verbindungen können mit den Gitterparametern der Substitutionsvarianten und dem Homogenitätsbereich der Stammverbindung RuIn3 in Einklang gebracht werden. Zur Eliminierung der RuO2-Verunreinigungen wurde eine Wasserstoff-Reduktionsapparatur entwickelt. Damit konnten die Sauerstoffverunreinigungen im Ru-Pulver vollständig entfernt werden. Mit diesem gereinigten Ausgangsmaterial wurden die mit Zn substituierten Spezies erneut synthetisiert. Es zeigt sich eine sehr gute Übereinstimmung zwischen der nominellen und experimentellen Zusammensetzung für die Zn-Substitution unter Nutzung des reduzierten Ru-Pulvers. Die Substitutionen der In-Position mit Zn führten zu maximalen TE Gütewerten von ZTmax = 0,76(19) in RuIn2;975Zn0;025. Neben Optimierungen der Ladungsträgerkonzentration spielen Veränderungen des Gefüges für die Eigenschaften eines TE Materials eine zentrale Rolle. Zur Ermittlung der Auswirkungen des Gefüges auf die TE Eigenschaften wurden große Einkristalle von RuGa3 (isostrukturell zu RuIn3) durch ein modifiziertes Bridgman-Verfahren gezüchtet und mit polykristallinem Material verglichen, welches aus diesem Einkristall hergestellt wurde. Gitterparameter und chemische Zusammensetzung der untersuchten RuGa3-Proben weisen keinerlei Variation auf. Die TE Eigenschaften zeigen im Hochtemperaturbereich (T = 300 K) keine signifikanten Unterschiede. In der Messung des Seebeck-Koeffizienten des RuGa3-Einkristalls lässt sich bei tiefen Temperaturen ein scharfes Minimum beobachten, welches in der polykristallinen Probe nicht auftritt. Analog dazu ist die thermische Leitfähigkeit des Einkristalls durch ein deutliches Maximum gekennzeichnet, welches in der polykristallinen Probe nahezu vollständig zusammenfällt. Die zusätzlichen Korngrenzen im Gefüge des polykristallinen Materials wirken als Streuzentren für Phononen, welche im entsprechenden RuGa3-Einkristall nicht vorhanden sind. Die intrinsischen Eigenschaften von RuGa3 mit hoher Wärmeleitfähigkeit in Verbindung mit niedrigem Seebeck-Koeffizienten bei tiefen Temperaturen könnten mit dem Phonon-drag-Effekt erklärt werden. Darauffolgend wurde Ruthenium durch Eisen vollständig ersetzt und der momentan viel untersuchte Halbleiter FeGa3 (isostrukturell zu RuIn3) studiert. Die Präparation polykristalliner Proben wurde analog zu RuIn3 und RuGa3 mit einer Fest-Flüssig-Reaktion und anschließender SPS-Behandlung durchgeführt. Aufgrund fehlender Untersuchungen zu einem geeigneten Substitutionselement wurden die Substitutionsvarianten FeGa3-xEx (E = Al, In, Zn, Ge; x = 0,50) präpariert. Die festen Lösungen FeGa3-xEx mit E = Al, In, Zn zeigen keine Verbesserung der TE Aktivität. Für FeGa3-xGex konnten aus chemischer und physikalischer Sicht die besten Ergebnisse erzielt werden. Systematisch sinkende c-Gitterparameter bei steigender Substitutionskonzentration gehen mit einer sehr guten Übereinstimmung von nomineller und experimenteller Zusammensetzung einher. Mit steigendem Ge-Gehalt wird der elektrische Widerstand und die thermische Leitfähigkeit gesenkt. Für die feste Lösung FeGa2;80Ge0;20 wird eine maximale TE Aktivität ZTmax = 0,21(5) erreicht. Für Untersuchungen zu Gefügeeinflüssen in FeGa3 wurden Einkristalle mit polykristallinem Material verglichen. Dabei weisen die Gitterparameter und die chemische Zusammensetzung der Einkristalle und des polykristallinen Materials im Bereich des experimentellen Fehlers keine Unterschiede auf. Die TE Eigenschaften bei hohen Temperaturen (T = 400 K) zeigen keine signifikanten Unterschiede zwischen poly- und einkristallinen Proben. Im Gegensatz dazu stehen Messungen des Seebeck-Koeffizienten und der thermischen Leitfähigkeit bei tiefen Temperaturen. Bei Temperaturen unter 20 K sind die Wärmeleitfähigkeiten der Einkristalle durch starke Maxima geprägt (κ[001](Czochralski) < κ[100](Czochralski) < κ(Ga-Fluss)). Im polykristallinen Material mit der höchsten Defekt-Konzentration (Korngrenzen) ist dieses Signal durch viele zusätzliche Streuzentren für Phononen fast vollständig unterdrückt. Der Seebeck-Koeffizient der Einkristalle und des polykristallinen Materials ist im gleichen Temperaturbereich und in gleicher Reihenfolge ebenfalls durch starke Signale gekennzeichnet. Für die ungewöhnlich niedrigen Seebeck-Koeffizienten wurden magnetische oder strukturelle Phasenübergänge durch Messungen der magnetischen Suszeptibilität und der Wärmekapazität ausgeschlossen. Theoretische Berechnungen der elektronischen Eigenschaften auf Basis von ermittelten Ladungsträgerkonzentrationen aus Hall-Messungen zeigen, dass die extremen Seebeck-Koeffizienten in FeGa3 nicht elektronischen Ursprungs sein können, weshalb Elektronen-Korrelation ausgeschlossen wurde. Die gesamte thermische Leitfähigkeit ist bei Temperaturen kleiner 400 K nahezu ausschließlich durch den Anteil des Gitters bestimmt. Demzufolge wurde der Phonon-drag-Effekt als Ursache für die ungewöhnlich niedrigen Seebeck-Koeffizienten in FeGa3-Einkristallen von bis zu -16.000(800) µV K-1 begründet. Im Rahmen dieser Arbeit wurde gezeigt, dass die kontrollierte Durchführung von chemischen Reaktionen in Kombination mit einer gründlichen chemischen Charakterisierung eine entscheidende Rolle bei der effizienten Präparation von (un-)bekannten Verbindungen und Materialien spielt.
45

Growth and properties of GdCa4O(BO3)3 single crystals

Möckel, Robert 29 June 2012 (has links)
In der vorliegenden Arbeit wird die Einkristallzüchtung nach dem Czochralskiverfahren von GdCa4O(BO3)3 (GdCOB) beschrieben. Aus insgesamt 18 Zuchtversuchen, bei denen auch die Ziehgeschwindigkeit zwischen 1 und 3mm/h variiert wurde, wurden erfolgreich nahezu perfekte Einkristalle gewonnen. In einigen Kristallen traten jedoch auch Risse oder Einschlüsse auf. Diese enthielten neben Iridium vom Tiegelmaterial auch andere Phasen des Gd2O3–B2O3–CaO-Systems, sowie P und Yb, deren Herkunft unklar ist. Als Hauptziehrichtung wurde die kristallographische b-Achse gewählt, ergänzt durch einige Experimente in der c-Richtung. In den drei kristallographischen Hauptrichtungen wurden die thermischen Ausdehnungskoeffizienten von GdCOB bestimmt. Diese können in zwei nahezu lineare Bereiche unterteilt werden: von Zimmertemperatur bis etwa 850° C und von 850 bis 1200° C, wobei die Koeffizienten im Hochtemperaturbereich deutlich höher sind (unter 850° C: alpha_a=11.1, alpha_b=8.6, alpha_c=13.3 10^-6/K, oberhalb 850° C: alpha_a=14.1, alpha_b=11.7, alpha_c=17.8 10^-6/K). Daraus ergibt sich, dass ein Phasenübergang höherer Ordnung vorliegen muss. Als mögliche Ursache wurde mittels HT-Raman Spektroskopie ein Ordnungs-Unordnungs-Übergang identifiziert, während dessen die BO3-Gruppen in der Struktur leicht rotieren. Weitere Untersuchungen mittels thermodynamischer Methoden führten zu schwachen, aber eindeutigen Signalen, die diesem Effekt ebenfalls zuzuordnen sind. Obwohl das Material ein vielversprechender Kandidat für piezoelektrische Anwendungen im Hochtemperaturbereich ist, wurde dieser Effekt bisher unzureichend beschrieben. Dieses Verhalten, kombiniert mit den anisotropen thermischen Ausdehnungskoeffizienten, könnte eine der Ursachen für das Vorkommen von Rissen in den Kristallen während der Synthese darstellen. Spektroskopische Untersuchungen ergaben einen großen Transparenzbereich von 340 bis 2500nm (29 400–4000 cm^-1), was für optische Anwendungen von großer Bedeutung ist. / In a series of 18 growth experiments, GdCa4O(BO3)3 (GdCOB) single crystals were successfully grown by the Czochralski method. They have a well-ordered structure, as revealed by single crystal structure analysis. Although the main growth direction was along the crystallographic b-axis, some experiments were conducted using the cdirection. Pulling velocities were varied between 1 and 3mm/h. Except for a few crystals with cracks or elongated "silk-like" inclusions consisting of multiphase impurities, most of the obtained crystals are of good quality. Those inclusions contain iridium, deriving from the crucible, P and Yb with unclear source, and other phases from the system Gd2O3–B2O3–CaO. Thermal expansion coefficients of GdCOB were determined in the directions of the crystallographic axes and found to be approximately linear in two temperature ranges: from 25° C to around 850° C, and from 850 to 1200° C, with the latter range showing significantly higher coefficients (below 850° C: alpha_a=11.1, alpha_b=8.6, alpha_c=13.3 10^-6/K, and above 850° C: alpha_a=14.1, alpha_b=11.7, alpha_c=17.8 x10^-6/K). This sudden increase of thermal expansion coefficients indicates a phase transition of higher order. An order-disorder transition in form of the rotation of BO3-triangles in the structure was made tentatively responsible for this transition, as revealed by HT-Raman spectroscopy. This transition was also detected by DSC-methods but appeared to result in very weak effects. Although the material is thought to represent a promising candidate for high temperature piezoelectric applications (noncentrosymmetric space group Cm), this effect of change in specification has not been described and it is unknown whether it has influence on the piezoelectric properties. Furthermore, this characteristic behaviour in combination with anisotropic coefficients may be the reason for the development of cracks during cooling of crystals, making the growth difficult. Spectroscopic investigation revealed a wide transparency range from 340 to 2500nm (29 400–4000 cm^-1) of GdCOB, which is a very important property for optical applications.
46

Layered Lanthanide Coinage-Metal Diarsenides: Syntheses, Commensurately and Incommensurately Modulated Structures, Electric and Magnetic Properties: Layered Lanthanide Coinage-Metal Diarsenides: Syntheses, Commensurately and Incommensurately Modulated Structures, Electric and Magnetic Properties

Rutzinger, Dieter 13 November 2009 (has links)
The crystal structures of the LnAgAs2 and LnAuAs2 compounds were reinvestigated by single-crystal diffraction experiments. Contrary to the respective copper compounds, no stuffed variant of the HfCuSi2 type was found. For CeAuAs2, GdAuAs2 and TbAuAs2, a slight under-occupation of the gold position was determined, the other compounds crystallize in a 1:1:2 ratio. Additionally, LaCuAs2 was synthesized for the first time in a 1:1:2 ratio. Due to the fact that imaging plate diffraction systems were used instead of four-circle diffractometers, satellite reflections could be observed for most of the LnCuAs2 compounds (Ln = Ce, Nd, Sm, Gd, Tb, Ho), CeAuAs2, GdAuAs2 and TbAuAs2. Structure models of GdCuAs2, CeAuAs2, GdAuAs2 and TbAuAs2 were developed, rod and layer groups of the respective structural motives were determined and approximants were presented. / Die Kristallstrukturen der LnAgAs2 und LnAuAs2 Verbindungen wurden mittels Einkristallbeugungsexperimenten neu untersucht. Im Gegensatz zu den jeweiligen Kupferverbindungen wurde keine gefüllte Variante des HfCuSi2-Typs gefunden. Im Falle von CeAuAs2, GdAuAs2 und TbAuAs2 wurde eine geringfügige Unterbesetzung der Gold-Position bestimmt, die anderen Verbindungen kristallisieren in einem 1:1:2-Verhältnis. Weiterhin wurde erstmals LaCuAs2 in diesem Verhältnis synthetisiert. Aufgrund der Verwendung von Bildplattensystemen an Stelle von Vierkreisdiffraktometern konnten Satellitenreflexe für den Großteil der LnCuAs2-Verbindungen (Ln = Ce, Nd, Sm, Gd, Tb, Ho), CeAuAs2, GdAuAs2 and TbAuAs2 beobachtet werden. Strukturmodelle von GdCuAs2, CeAuAs2, GdAuAs2 und TbAuAs2 wurden entwickelt, Stab- und Ebenengruppen der einzelnen Strukturmotive wurden bestimmt und Approximanten präsentiert.
47

3d- und 4f-Korrelationen in quaternären Eisenpniktiden: der Sonderfall CeFeAs1-xPxO

Jesche, Anton 01 July 2011 (has links)
Die Legierungsserie CeFeAs1−xPxO bietet die Möglichkeit, eine außergewöhnliche Vielfalt unterschiedlicher Grundzustände mit starken Korrelationen der 3d- und der 4f-Elektronen zu untersuchen. CeFePO ist an der Grenze zwischen einem paramagnetischen und einem ferromagnetischen Ce-Zustand und zeigt starke 4f-Korrelationen, die zu Schwere-Fermionen-Verhalten führen, während Fe unmagnetisch ist. Im Gegensatz dazu sind die Eigenschaften von CeFeAsO durch die 3d-Korrelationen des Fe dominiert, die zu antiferromagnetischer Ordnung unterhalb von T_N(Fe) = 145K führen, während sich Ce in einem stabilen dreiwertigen Zustand befindet und unterhalb von T_N(Ce) = 3.7K ebenfalls antiferromagnetisch ordnet. Man erwartet deshalb mindestens zwei kritische Punkte, an denen die magnetische Ordnung unterdrückt wird. Hier sollte insbesondere geklärt werden, ob bei diesen kritischen Konzentrationen Quantenphasenübergänge auftreten, bei denen die Ordnungstemperatur zu T = 0K verschoben ist und in denen die Ursache von Nicht-Fermi-Flüssigkeitsverhalten und unkonventioneller Supraleitung gesehen wird. Grundlage für die Untersuchungen war zunächst die Züchtung qualitativ hochwertiger Einkristalle hinreichender Größe, was im Rahmen dieser Arbeit erstmalig gelungen ist. Hierzu wurde eine Sn-Flux Methode optimiert, mit der plättchenförmige Einkristalle mit Abmessungen von typischerweise 1mm x 1mm x 0.1mm und Massen bis 0.6mg erhalten werden konnten. Zur Bestimmung struktureller Parameter kamen Röntgenbeugung, energiedispersive Röntgenspektroskopie und chemische Analyse zum Einsatz. Physikalische Eigenschaften wurden vor allem durch Messungen der Spezifischen Wärmekapazität, der Magnetisierung und des elektrischen Widerstandes im Temperaturbereich T = 0.35 − 300K untersucht. Die antiferromagnetische Ordnung von Fe in CeFeAsO ist mit einer orthorhombischen Verzerrung verbunden, die bei einer etwas höheren Temperatur von T_0 = 151K stattfindet. Diese Phasenübergänge sind von besonderem Interesse, da ihre Unterdrückung zur Ausbildung von Hochtemperatur-Supraleitung in den Eisenpniktiden führt, ihr Wechselspiel aber nicht vollständig verstanden ist. Sie unterteilen die Temperaturabhängigkeit des elektrischen Widerstandes ρ(T) von CeFeAsO in zwei Bereiche. In der paramagnetischen tetragonalen Phase nimmt ρ(T) beim Abkühlen von Raumtemperatur aus bislang ungeklärter Ursache zunächst leicht zu. Erst mit Einsetzen der orthorhombischen Verzerrung bei T_0 kehrt sich die Temperaturabhängigkeit um und ρ(T) nimmt mit sinkender Temperatur ab, wobei die Abnahme bei T_N(Fe) nochmals stärker wird und bis zu tiefsten Temperaturen metallisches Verhalten beobachtet wird. Dass sich CeFeAsO somit nicht unmittelbar an der Grenze zu einem Mott-Isolator befindet, wie es in Anlehnung an die Kuprat-Supraleiter zunächst vermutet wurde, und Restwiderstandsverhältnisse von RRR > 10 überhaupt möglich sind, konnte im Rahmen dieser Arbeit erstmalig gezeigt werden. Durch sorgfältige Untersuchung des Temperaturunter- schiedes zwischen T_N(Fe) und T_0 und dem Vergleich mit dotierten und undotierten AFe2As2-Verbindungen konnte ein vereinheitlichtes Bild der Ausgangsverbindungen aller Fe-basierten Supraleiter geschaffen werden. In diesem tritt im Temperaturbereich T_N(Fe) < T < T_0 eine elektronische nematische Phase hervor, deren Existenzbereich durch die magnetische Kopplung entlang der kristallographischen c-Achse und deren Defektabhängigkeit bestimmt ist. Wie alle Substitutionen in RFeAsO-Verbindungen führt die Ersetzung von As durch P auch in CeFeAs1−xPxO zu einer Verringerung von T_N(Fe). Ein quantenkritischer Punkt mit T_N(Fe) --> 0K ist jedoch unwahrscheinlich, da ab einer kritischen Konzentration von x = 0.30 die Signatur der Eisen-Ordnung in ρ(T) zwar merklich schwächer wird, T_N(Fe) ≈ 40K bei weiterer Erhöhung von x aber nicht mehr zu tieferen Temperaturen schiebt. In Proben mit der kritischen Konzentration von x = 0.30 - und nur in diesem Konzentrationsbereich - konnte reproduzierbar ein verschwindender elektrischer Widerstand und damit ein Hinweis auf Supraleitung mit einer Sprungtemperatur von T_SL= 4K gefunden werden. Im Gegensatz zur ’Dom-förmigen’ Abhängigkeit der Sprungtemperatur von der Konzentration eines Fremdatoms in den Phasendiagrammen anderer Fe-basierter Supraleiter nimmt jedoch T_SL in CeFeAs1−xPxO bei weiterer Erhöhung von x nicht zu. Stattdessen wird bei x > 0.30 ein ferromagnetisch geordneter Grundzustand (des Ce) stabilisiert, der mit Supraleitung konkurriert. Die antiferromagnetische Ordnung von Cer in undotiertem CeFeAsO weist typische Merkmale magnetischer Ordnung lokaler Momente auf und impliziert eine Dominanz der RKKY-Wechselwirkung gegenüber einem schwachen Kondo-Effekt. Die Ersetzung von As durch P wirkt als chemischer Druck und stabilisiert somit den unmagnetischen Valenzzustand Ce4+. Trotzdem ist die Ce-Ordnung bei kleinen P-Konzentrationen - im Gegensatz zur Fe- Ordnung - nahezu unverändert vom Verhalten in undotiertem CeFeAsO. Bei der kritischen Konzentration von x = 0.30 tritt überraschend ein plötzlicher Übergang von antiferromagnetischer zu ferromagnetischer Ordnung mit einer Curie-Temperatur von T_C(Ce) = 4K auf, der offensichtlich mit der Unterdrückung der Fe-Ordnung korreliert ist und nicht nur aus einem reinen Volumeneffekt resultiert. Als mögliche Ursache wird eine Umstrukturierung der Fermi-Fläche bei Unterdrückung der Fe-Ordnung betrachtet, die zu einem Vorzeichenwechsel der Austauschkopplung J_ij bei RKKY-Wechselwirkung führt. Bei hohen Phosphor-Konzentrationen sinkt T_C(Ce) und geht bei x = 0.90 von ferromagnetischer zur antiferromagnetischer Ordnung über, wie es bei Annäherung an einen quantenkritischen Punkt bereits in einer Vielzahl ferromagnetischer Systeme beobachtet wurde. In stöchiometrischem CeFePO wurde magnetisch kurzreichweitige Ordnung und Spin-Glas-Verhalten mit einer charakteristischen Temperatur von T_SG= 0.75K gefunden. Der Unterschied zur früher gemachten Beobachtung eines paramagnetischen Grundzustandes resultiert einzig aus Variationen bei der Synthese und ist in strukturellen Parametern nicht nachweisbar - eine für Schwere- Fermionen-Systeme typische Sensitivität! Der zweite kritische Punkt, an dem die Ce-Ordnung verschwinden sollte, liegt also nicht wie zu Beginn erwartet bei hohen P-Konzentrationen, sondern in stöchiometrischem CeFePO. Eine Wärmebehandlung von CeFePO bei T ∼ 800◦C kann zur gezielten Manipulation des Grundzustandes genutzt werden und hat zur Ausbildung von logarithmischer Divergenz der spezifischen Wärmekapazität C/T und damit einem ersten direkten Hinweis auf Quantenkritikalität geführt.
48

Influence of High Temperature Creep upon the Structure of ß-NiAl and ß-NiAl(Fe) Single Crystals

Zhang, Hui 01 November 2002 (has links)
The principal aim of this thesis is to characterise quantitatively the influence of high temperature creep upon the structure of ß-NiAl and ß-NiAl(Fe) single crystals. A non-destructive procedure is established following the classic line of X-ray structure analysis, namely controlling the chemical composition with the electron probe microanalysis, determining the unit cell contents from the combined lattice parameter and mass density measurements, and refining the structure parameters according to the X-ray reflection intensity. Specifically, two special single crystal X-ray diffraction methods, namely the back reflection Kossel technique and the back reflection Laue method, are applied for the determination of lattice parameter and for the collection of intensity data. All experimental measurements can be performed in non-destructive manner, which allows a direct comparison to be made between the crystal structure determined prior to and after a creep test.
49

Oberflächenanalytische Untersuchungen von Segregationseffekten an dotierten oxidischen Feinstpulvern und Einkristallen

Dobler, Dorota 17 October 2002 (has links)
Reine und dotierte SnO2 Feinstpulver und Einkristalle wurden mit verschiedenen Methoden hergestellt. Die Abhängigkeit der Eigenschaften von der Dotierungsart und der Dotierungskonzentration wurde untersucht. Die Dotierung mit fünfwertigen Elementen (Sb, Nb) führt zur Erniedrigung des spezifischen elektrischen Widerstandes und die Dotierung mit dreiwertigen Elementen (z.B. In) zu seiner Erhöhung. An den dotierten Materialien kann mittels XPS eine Segregationsschicht nachgewiesen werden. Der Umfang dieser Schicht ist abhängig sowohl von dem Dotierungselement, als auch von den Herstellungsbedingungen (z.B. Temperatur und Temperungszeit). Für die Pulver wird, im Gegensatz zu den Einkristallen, kein thermodynamisches Gleichgewicht für Segregationsprozess im untersuchten Zeitfenster gefunden. In der vorliegenden Arbeit wird ein Model vorgestellt, dass es erlaubt, die Dicke der Segregationsschicht, als auch der verbleibenden Volumenkonzentration der Dotierungselement im SnO2 Kristallit zu berechnen. Die Volumenkonzentration beträgt in Abhängigkeit von der Dotierungsart und Temperatur bis zu 70% der gesamten Dotierungskonzentration. Die sich ausbildende Segregationsschicht erreicht einen Bedeckungsgrad von bis zu einer Monolage. Die Aktivierungsenergie der Diffusion, sowie die freie Enthalpie des Segregationsprozesses können für die hier untersuchten Dotierungselemente in SnO2 bestimmt werden.
50

Optical anisotropy and exciton dispersion in organic single crystals covering different exciton coupling mechanisms

Graf, Lukas 22 March 2023 (has links)
In this work, electronic excitations in organic semiconductors were investigated with electron energy-loss spectroscopy and optical absorption spectroscopy. Excitons are bound electron-hole pairs, which mostly determine the photophysical properties of the material. Excitons in organic semiconductors can interact with each other with two different mechanisms: Coulomb and charge-transfer coupling and a respective mix of both. Depending on which is dominating, different optical properties and a change of the exciton’s energy as a function of momentum are the consequences. This is called the exciton dispersion E(k) and can be measured by electron energy-loss spectroscopy. The obtained data were analysed with the assistance of calculations of the point dipole model, which is based on Coulomb coupling only. Four different materials were chosen, which all revealed new, unexpected insights into the field of exciton dynamics in organic crystals. The main focus of this work are molecular crystals, of which two were grown with physical vapor transport within this work. Dibenzopentacene, a pentacene derivative, was grown and characterized as a single crystal for the first time. A strong structural and optical anisotropy was revealed, which indicates, that the determination of the optical properties arises not only from the intermixing of the excitons with themselves, but also with vibrational modes. The exciton dispersion showed a smaller exciton bandwidth, than in the close relative pentacene, which suggests weaker exciton interaction parameters. As a further material, para-quaterphenyl single crystals were grown. According to the measurements a strong polarization dependence can be seen, which is underlined by calculations. Momentum dependent measurements displayed a strong dispersion of the first excitation, which could not be explained by the interaction of a molecule with the nearest neighbours, instead the next-nearest neighbours must be included to describe the dispersion appropriately. Single crystals of perylene were provided by Xianjie Liu’s group from the Linköping University. They also showed a strong anisotropy in polarization dependent optical absorption measurements. As the point dipole calculations result in a wrong polarization dependence of the first two excitations, it can be assumed that an additional contribution in the form of charge-transfer coupling between the molecules, which can flip this polarization dependence, is necessary to model the spectra properly. Contrary to the optical absorption data, the exciton dispersion is behaving similar as Coulomb coupled systems, which is confirmed by point dipole calculations. This work is completed with a momentum and temperature dependent series of pentacene thin films. It was shown that thin film spectra can represent single crystal spectra at small momenta. The according study revealed a strong temperature dependence of the exciton dispersion.

Page generated in 0.1902 seconds