• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strain rate behaviour of thermoplastic polymers

Al-Maliky, Noori Sabih Jarrih January 1997 (has links)
Polymers are increasingly used in structures that have to withstand impact conditions. This thesis describes an investigation of strain rate properties at room temperature of four engineering polymers; polyethylene (high density, HDPE and ultra high molecular weight, UHMWPE), nylatron and polyetheretherketone (PEEK 150g). A split Hopkinson pressure bar (SHPB) system was used to study the response of these polymers in compression tests at high strain rates up to 10' S-1. Stress equilibrium in SHPB samples was studied theoretically by examining multiple reflection effects during the initial elastic loading of the polymers; this study proved very useful in the analysis of SHPB tests. To cover a wide range of strain rate, compression studies were also made at low strain rates (10-3 _10-2 S-1) using a Hounsfield screw machine. Viscoelastic models have been applied to these results. These models fit quite well with the experimental results of HDPE, UHMWPE, and nylatron, but not to the PEEK due to the yield drop in the stress - strain curves, especially at high strain rates. An exploding wire technique was used as an axial impulsive loading system for hollow cylindrical samples. An image converter camera at framing intervals of 21ls or 10 Ils recorded the radial expansion of the cylinder. The expanding cylinder was used as a driving system for a new technique called the freely expanding ring method, which was used to obtain the stress - strain behaviour of polymeric thin rings placed as a sliding fit on the cylinder. This method produced very high tensile strain rates up to fracture (> 10' S-1). Comparisons have been made between results obtained from the quasi-static, SHPB, and expanding ring tests. The freely expanding ring and SHPB results were in good agreement indicating similar tensile and compressive high strain rate behaviour. The mechanical properties of the above polymers are strongly dependent on strain rate. The Young's modulus and the flow stress increase with increasing strain rate. Nylatron showed high strain rate strain softening at high strain, this was due to the high temperature rise during loading, when the transition temperature (Tg) of the material (50 QC) was exceeded. However, the other materials showed continuous hardening behaviour. Plots of the flow stress at 5% and 10% strain vs log strain rate showed a linear increase up to a strain rate of about 103 S-1. Above 103 s-1, the stress rose more rapidly, but then showed significant drops for nylatron and PEEK. These drops in stress are probably due to both micro crack initiation in the sample and also high temperatures around the crack tips.
2

Elasto-plastic large deflection response of radially stiffened circular, sector and annular sector plates

Salehi, Manouchehr January 1990 (has links)
No description available.
3

Vibrational anharmonicity and the elastic behaviour of some antiferromagnetic materials

Deni, Mohd Salleh Mohd January 1988 (has links)
No description available.
4

Deterimination of optimal yield line patterns governing the collapse of slabs

Thavalingham, Appapillai January 1995 (has links)
No description available.
5

Nano-scale temperature dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope (AFM).

Grant, Colin, A., Alfouzan, Abdulrahman, Twigg, Peter C., Coates, Philip D., Gough, Timothy D. 2012 June 1920 (has links)
Visco-elastic behaviour at the nano-level of a commonly used polymer (PET) is characterised using atomic force microscopy (AFM) at a range of temperatures. The modulus, indentation creep and relaxation time of the PET film (thickness = 100 m) is highly sensitive to temperature over an experimental temperature range of 22¿175 ¿C. The analysis showed a 40-fold increase in the amount of indentation creep on raising the temperature from 22 ¿C to 100 ¿C, with the most rapid rise occurring above the glass-to-rubber transition temperature (Tg = 77.1 ¿C). At higher temperatures, close to the crystallisation temperature (Tc = 134.7 ¿C), the indentation creep reduced to levels similar to those at temperatures below Tg. The calculated relaxation time showed a similar temperature dependence, rising from 0.6 s below Tg to 1.2 s between Tg and Tc and falling back to 0.6 s above Tc. Whereas, the recorded modulus of the thick polymer film decreases above Tg, subsequently increasing near Tc. These visco-elastic parameters are obtained via mechanical modelling of the creep curves and are correlated to the thermal phase changes that occur in PET, as revealed by differential scanning calorimetry (DSC).
6

Modelling of the resilient and permanent deformation behaviour of subgrade soils and unbound granular materials

Soliman, Haithem 03 October 2015 (has links)
Laboratory characterization of subgrade soils and unbound granular materials is an essential component of the Mechanistic-Empirical Pavement Design Guide (Pavement ME). The design thickness and performance of a pavement structure are highly dependent on the deformation behaviour of subgrade and granular material. Specifications for granular materials vary among transportation agencies based on the availability of materials, climatic conditions, and function. Specifications aim to provide durable materials that meet design requirements and achieve the target design life with cost effective materials. The objectives of the research are to: • evaluate resilient modulus of typical fine-grained soils under traffic loading. • evaluate resilient modulus, permanent deformation, and permeability of typical unbound granular materials. • evaluate the effect of moisture and fines fraction on the performance of unbound granular materials and subgrade soil. • develop prediction models for resilient modulus to improve reliability of Level 2 inputs in the Pavement ME. • provide test data in support of updating Manitoba Infrastructure and Transportation specifications for unbound granular materials to improve the performance of pavement structures. Resilient modulus tests were conducted on three types of subgrade soil (high plastic clay, sandy clay, and silty sand/sandy silt) at four levels of moisture content. Resilient modulus, permanent deformation and permeability tests were conducted on six gradations representing two types of granular material (100% crushed limestone and gravel) at two levels of moisture content. Prediction models were developed for resilient modulus and compared to the models developed under the Long Term Pavement Performance program. The proposed models provided more reliable predictions with lower root mean square error. The deformation behaviour of the granular materials was classified according to the shakedown and dissipated energy approaches. Among the tested fines contents, limestone and gravel materials with optimum fines contents of 4.5% and 9%, respectively, had better resistance to plastic deformation and higher resilient modulus. The dissipated energy approach can be used to determine the stress ratio for the boundary between post compaction and stable zones from multistage triaxial testing. Result of permeability tests showed that the hydraulic conductivity of unbound granular material increased as the fines content decreased. / February 2016
7

Nouvelle formulation monolithique en élément finis stabilisés pour l'interaction fluide-structure / Novel monolithic stabilized finite element method for fluid-structure interaction

El Feghali, Stéphanie 28 September 2012 (has links)
L'Interaction Fluide-Structure (IFS) décrit une classe très générale de problème physique, ce qui explique la nécessité de développer une méthode numérique capable de simuler le problème FSI. Pour cette raison, un solveur IFS est développé qui peut traiter un écoulement de fluide incompressible en interaction avec des structures différente: élastique ou rigide. Dans cet aspect, le solveur peut couvrir une large gamme d'applications.La méthode proposée est développée dans le cadre d'une formulation monolithique dans un contexte Eulérien. Cette méthode consiste à considérer un seul maillage et résoudre un seul système d'équations avec des propriétés matérielles différentes. La fonction distance permet de définir la position et l'interface de tous les objets à l'intérieur du domaine et de fournir les propriétés physiques pour chaque sous-domaine. L'adaptation de maillage anisotrope basé sur la variation de la fonction distance est ensuite appliquée pour assurer une capture précise des discontinuités à l'interface fluide-solide.La formulation monolithique est assurée par l'ajout d'un tenseur supplémentaire dans les équations de Navier-Stokes. Ce tenseur provient de la présence de la structure dans le fluide. Le système est résolu en utilisant une méthode élément fini et stabilisé suivant la formulation variationnelle multiéchelle. Cette formulation consiste à décomposer les champs de vitesse et pression en grande et petite échelles. La particularité de l'approche proposée réside dans l'enrichissement du tenseur de l'extra contraint.La première application est la simulation IFS avec un corps rigide. Le corps rigide est décrit en imposant une valeur nul du tenseur des déformations, et le mouvement est obtenu par la résolution du mouvement de corps rigide. Nous évaluons le comportement et la précision de la formulation proposée dans la simulation des exemples 2D et 3D. Les résultats sont comparés avec la littérature et montrent que la méthode développée est stable et précise.La seconde application est la simulation IFS avec un corps élastique. Dans ce cas, une équation supplémentaire est ajoutée au système précédent qui permet de résoudre le champ de déplacement. Et la contrainte de rigidité est remplacée par la loi de comportement du corps élastique. La déformation et le mouvement du corps élastique sont réalisés en résolvant l'équation de convection de la Level-Set. Nous illustrons la flexibilité de la formulation proposée par des exemples 2D. / Numerical simulations of fluid-structure interaction (FSI) are of first interest in numerous industrial problems: aeronautics, heat treatments, aerodynamic, bioengineering... Because of the high complexity of such problems, analytical study is in general not sufficient to understand and solve them. FSI simulations are then nowadays the focus of numerous investigations, and various approaches are proposed to treat them. We propose in this thesis a novel monolithic approach to deal with the interaction between an incompressible fluid flow and rigid/ elastic material. This method consists in considering a single grid and solving one set of equations with different material properties. A distance function enables to define the position and the interface of any objects with complex shapes inside the volume and to provide heterogeneous physical properties for each subdomain. Different anisotropic mesh adaptation algorithms based on the variations of the distance function or on using error estimators are used to ensure an accurate capture of the discontinuities at the fluid-solid interface. The monolithic formulation is insured by adding an extra-stress tensor in the Navier-Stokes equations coming from the presence of the structure in the fluid. The system is then solved using a finite element Variational MultiScale (VMS) method, which consists of decomposition, for both the velocity and the pressure fields, into coarse/resolved scales and fine/unresolved scales. The distinctive feature of the proposed approach resides in the efficient enrichment of the extra constraint. In the first part of the thesis, we use the proposed approach to assess its accuracy and ability to deal with fluid-rigid interaction. The rigid body is prescribed under the constraint of imposing the nullity of the strain tensor, and its movement is achieved by solving the rigid body motion. Several test case, in 2D and 3D with simple and complex geometries are presented. Results are compared with existing ones in the literature showing good stability and accuracy on unstructured and adapted meshes. In the second, we present different routes and an extension of the approach to deal with elastic body. In this case, an additional equation is added to the previous system to solve the displacement field. And the rigidity constraint is replaced with a corresponding behaviour law of the material. The elastic deformation and motion are captured using a convected level-set method. We present several 2D numerical tests, which is considered as classical benchmarks in the literature, and discuss their results.
8

Identification du comportement quasi-statique et dynamique de la mousse de polyuérathane au travers de modèles de mémoire / Identification of the quasi-static and dynamic behaviour of polyurethane foams through memory models

Jmal, Hamdi 25 September 2012 (has links)
La mousse de polyuréthane est un matériau cellulaire caractérisé par un spectre de propriétés mécaniques intéressant : une faible densité, une capacité à absorber l’énergie de déformation et une faible raideur.Elle présente également des propriétés telles qu’une excellente isolation thermique et acoustique, une forte absorption des liquides et une diffusion complexe de la lumière. Ce spectre de propriétés fait de la mousse de polyuréthane un des matériaux couramment utilisés dans de nombreuses applications phoniques, thermiques et de confort. Pour contrôler la vibration transmise aux occupants des sièges, plusieurs dispositifs automatiques de régulation et de contrôle sont actuellement en cours de développement tels que les amortisseurs actifs et semi-actifs. La performance de ces derniers dépend bien évidemment de la prédiction des comportements de tous les composants du siège et en particulier la mousse. D’une façon générale, il est indispensable de modéliser le comportement mécanique complexe de la mousse de polyuréthane et d’identifier ses propriétés quasi-statique et dynamiques afin d’optimiser la conception des systèmes incluant la mousse en particulier l’optimisation de l’aspect confort. Dans cette optique, l’objectif principal de cette thèse consiste à implémenter des modèles mécaniques de la mousse de polyuréthane fiables et capables de prévoir sa réponse sous différentes conditions d’essais. Dans la littérature, on retrouve les divers modèles développés tels que les modèles de mémoire entier et fractionnaire. L’inconvénient majeur de ces modèles est lié à la dépendance de leurs paramètres vis-à-vis des conditions d’essais, chose qui affecte le caractère général de leur représentativité des comportements quasi-statique et dynamique de la mousse polyuréthane. Pour pallier à cet inconvénient, nous avons développé des modèles qui, grâce à des choix judicieux de méthodes d’identification, assurent une représentativité plus générale des comportements quasi-statique et dynamique de la mousse polyuréthane. En effet, nous avons démontré qu’on peut exprimer les paramètres dimensionnels des modèles développés par le produit de deux parties indépendantes ; une regroupant les conditions d’essais et une autre définissant les paramètres adimensionnels et invariants qui caractérisent le matériau. Ces résultats ont été obtenus à partir de plusieurs études expérimentales qui ont permis l’appréhension du comportement quasi-statique (à travers des essais de compression unidirectionnelle) et dynamique (à travers des tests en vibration entretenue). La mousse, sous des grandes déformations, présente à la fois un comportement élastique non linéaire et un comportement viscoélastique. En outre, une discrimination entre les modèles développés particulièrement en quasi-statique a été effectuée. Les avantages et les limites de chacun y ont été discutés. / Polyurethane foam is a cellular material characterized by an interesting mechanical spectrum of properties: low density, capacity to absorb the deformation energy and low stiffness. It presents also several other properties, such as excellent thermal and acoustic insulation, high absorption of fluids and a complex scattering of light. This spectrum of properties makes polyurethane foam commonly used in many thermal, acoustic and comfort applications. To control the vibration transmitted to the seat occupants, several automatic devices for regulation and control are currently outstanding developments like active and semi-active dampers. The performance of these devices depends, of course, on the prediction of the behaviour of all the seat components and especially foam. Generally, it is essential to model the complex mechanical behaviour of polyurethane foam and identify its quasi-staticand dynamicproperties in order to optimize the design of systems with foam particularly the optimization of the comfort aspect. In this mind, the main goal of this thesis is to implement mechanical models of polyurethane foam reliable and able to provide its response under different test conditions. Several models has been developed in literature such as memory fractional and integer models. The main disadvantage of these models is the dependence of their parameters against the test conditions. It affects the general character of their representativeness to the quasi-static and dynamic behaviours of polyurethane foam. To solve this problem, we developed models with specific identification methods to ensure broader representation of the quasi-static and dynamic behaviour of polyurethane foam. Indeed, we have demonstrated that we can express the dimensional parameters of the developed models by the product of two independent parts; the first contain only the test conditions and the second define the dimensionless and invariant parameters that characterize the foam material. The developed models have been establish after several experimental studies allowing the apprehension of the quasi-static behaviour (through unidirectional compression tests) and the dynamic behaviour (through harmonic vibration tests). The polyurethane foam, under large deformations, exhibits a non linear elastic behaviour and viscoelastic behaviour. In addition, discrimination between the models developed especially in quasi-static case has been conducted. The advantages and limitations of each model have been discussed.

Page generated in 0.0549 seconds