Spelling suggestions: "subject:"elasticity -- amathematical models"" "subject:"elasticity -- dmathematical models""
11 |
Weakly non-local arbitrarily-shaped absorbing boundary conditions for acoustics and elastodynamics theory and numerical experimentsLee, Sanghoon 28 August 2008 (has links)
Not available / text
|
12 |
Nonlinear elastic behaviour of infrastructure materials with configurational forcesTeka, Linda Getachew January 2024 (has links)
The nonlinear elastic behavior of infrastructure materials is a critical factor in the design and performance of various structural systems. This research introduces a novel approach to enhance the flexural rigidity and deflection control of large-spanned beams, aerial personal rapid transit (PRT) structures, and packed parallel wire cables by leveraging configurational forces, such as horizontal constraints and wrapping forces. These forces produce prestress over the structure members, but the prestress changes with the configuration, and therefore, the effective stiffness can be tailored by these configurational forces.
In the first part of this research, the governing equation considering the horizontal force is formulated to address the large deflections commonly encountered in beams subjected to transverse loading with horizontal constraints. The study demonstrates that deflection can be significantly reduced, thereby increasing the effective flexural rigidity without necessitating larger cross-sections. Green’s functions for various boundary conditions are derived, and the theory is validated through a series of experimental tests on Building Integrated Photovoltaic (BIPV) panels and PRT guideways. The case studies show that horizontal prestress enhances beam stiffness, reducing deflection by up to 87% within the elastic load range.
The research further extends to the mechanical behavior of packed parallel wire cables arranged in hexagonal patterns and wrapped with bands. The wrapping force is shown to modify the effective stiffness of the cables, a phenomenon modeled using the Singum model and Hertz contact theory. This approach simulates the stress transfer between wires under transverse loading, introducing an elastoplastic contact model that accounts for yielding in the contact zones. The study presents a methodology for predicting the development length and critical axial load in cables with broken wires, providing a robust tool for the design and maintenance of suspension bridge cables.
In the final part of this research, the focus shifts to the mechanical performance of a fivelayered mullion design for energy-efficient building facades. Comprising three aluminum layers sandwiched between two polyamide cores, the beam is analyzed using linear and nonlinear elastic sandwich beam theory to derive expressions for effective stiffness. These theoretical predictions are compared with finite element method simulations and validated against experimental data from three-point and four-point bending tests. The results confirm the accuracy of the analytical models presented, demonstrating their potential for enhancing the structural performance of modern building facades.
A significant contribution of this research is the development of a comprehensive framework for understanding and predicting the nonlinear elastic behavior of infrastructure materials under complex loading conditions, which the superposition principle may not be simply applicable even though the material behavior is elastic. By integrating configurational forces into the design process, this work offers a novel approach to improving the structural integrity and performance of beams, cables, and facade systems, with wide-ranging implications for the fields of structural engineering and material science.
|
13 |
Finite-amplitude waves in deformed elastic materials / Onde d'amplitude finie dans des matériaux élastiques déformésRodrigues Ferreira, Elizabete 10 October 2008 (has links)
Le contexte de cette thèse est la théorie de l'élasticité non linéaire, appelée également "élasticité finie". On y présente des résultats concernant la propagation d'ondes d'amplitude finie dans des matériaux élastiques non linéaires soumis à une grande déformation statique homogène. Bien que les matériaux considérés soient isotropes, lors de la propagation d'ondes un comportement anisotrope dû à la déformation statique se manifeste. <p><p>Après un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie. <p><p>Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen. <p><p>En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie. <p><p>Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche. <p><p><p>The context of this thesis is the non linear elasticity theory, also called "finite elasticity".<p>Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation. <p><p>After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited.<p><p>In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model. <p><p>In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux. <p><p>Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited. <p><p><p><p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1213 seconds