Spelling suggestions: "subject:"elastoplasticidade"" "subject:"elastoplasticidad""
1 |
Implementação de métodos explícitos de integração de tensões em programas de elementos finitos para análise geomecânicaCristina Almeida de Assis, Débora 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T17:37:46Z (GMT). No. of bitstreams: 2
arquivo2408_1.pdf: 3478641 bytes, checksum: eb0a9acd07c63f1148e729cf12fd792a (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2010 / Agência Nacional do Petróleo, Gás Natural e Biocombustíveis / O comportamento de solos e rochas pode ser descrito através de modelos
constitutivos que associam estados de tensões com estados de deformações. Trata-se de um
problema de valor inicial cuja solução é obtida empregando de técnicas numéricas.
Neste problema, a partir de um estado de tensão inicial e de um incremento de
deformações, obtém-se um novo estado de tensões resultante da integração da lei
constitutiva ao longo do passo de tempo. As relações constitutivas usadas são do tipo elastoplástica
e visco-plástica com regularização viscosa de Perzina. Os critérios de plastificação
adotados foram os de Mohr-Coulomb e o de Drucker-Prager, ambos com suavização da
superfície de fluência. Foram analisados problemas mecânicos e hidro-mecânicos. Para
representar o acoplamento hidro-mecânico foram adotadas leis que relacionam variáveis
mecânicas a deformação do meio.
Na dissertação foram implementados, no programa de elementos finitos
CODE_BRIGHT, o método explícito de integrações de tensões de Euler Modificado e o de
Runge-Kutta-Dormand-Price, ambos com controle de erro. As implementações foram
verificadas através de um problema de expansão de cavidade cilíndrica e as análises de
desempenho dos esquemas de integração foram feitas tomando como critério o número de
passos e o tempo total de CPU. Esta mesma análise também foi realizada para os casos de
escavação do túnel de Brasília e o de reativação de falha selante, mostrando que os
algoritmos implementados funcionam satisfatoriamente para problemas geomecânicos com
e sem acoplamento de fluxo de fluidos
|
2 |
Análise numérica bidimensional de sólidos com comportamento visco-elasto-plástico em grandes deformações e situações de contato / Two-dimensional numerical analysis of solids with visco-elasto-plastic behavior under large strains and contact situationsCarvalho, Péricles Rafael Pavão 26 March 2019 (has links)
Motivado por diversos processos de manufatura, tais como conformação de metais a frio ou mesmo manufatura aditiva, este trabalho consiste no desenvolvimento de um código computacional para a simulação numérica de problemas bidimensionais que abordam três tipos de não-linearidade: a geométrica, presente em situações de grandes deslocamentos; a física, presente no modelo constitutivo do material; e a de contato. Na primeira etapa, desenvolve-se um programa para análise dinâmica bidimensional de sólidos elásticos, utilizando a abordagem posicional do método dos elementos finitos, que engloba naturalmente a não-linearidade geométrica em sua formulação. Em seguida, implementam-se modelos constitutivos não-elásticos para problemas com grandes deformações. No modelo elastoplástico, adota-se o critério de von Mises com encruamento cinemático baseado na lei de Armstrong-Frederick. Essa formulação é então generalizada para o caso visco-plástico, onde é considerado o modelo de Perzyna em conjunto com a lei de Norton. No caso visco-elástico, utiliza-se uma formulação que parte do modelo reológico de Zener. Por fim, apresenta-se um modelo visco-elasto-plástico que consiste no acoplamento dos modelos visco-elástico e visco-plástico descritos anteriormente. Em todos os casos, utiliza-se a decomposição multiplicativa do gradiente da função mudança de configuração. Com respeito à aplicação 2D, consideram-se as hipóteses de estado plano de deformações e estado plano de tensões, onde a última é resolvida numericamente por um procedimento local de Newton-Raphson. Para o problema de contato, aplica-se a estratégia Nó-a-Segmento, sendo as condições de não-penetração impostas com a introdução de multiplicadores de Lagrange. A formulação é testada em cada uma das etapas por meio de exemplos numéricos de verificação. Além disso, para mostrar as potencialidades do código desenvolvido, são propostos diversos exemplos numéricos, sendo alguns inspirados por processos de manufatura existentes. Nesses exemplos, são estudados os efeitos de diferentes parâmetros dos materiais e diferentes taxas de deformação na resposta numérica, permitindo uma análise do comportamento dissipativo decorrente da plastificação e da viscosidade, incluindo a influência desses sobre o amortecimento dinâmico. / Motivated by several manufacturing processes, such as cold metal forming or even additive manufacturing, in this work we develop a computational code for numerical simulation of two-dimensional problems addressing three types of nonlinearities: geometric nonlinearity, present in large displacements situations; physical non-linearity, present in the material constitutive model; and contact non-linearity. In the first step, we develop a computational program for dynamic analysis of two-dimensional elastic solids using the positional finite element method, which naturally takes into account geometric non-linearity in its formulation. Following, we implement inelastic constitutive models for large strain problems. In the elasto-plastic model, we adopt von Mises yeld criteria and kinematic hardening based on the Armstrong-Frederick law. The formulation is then generalized to the visco-plastic case, where we consider Perzyna model associated with Norton\'s law. In the visco-elastic case, Zener\'s rheological model is employed. Finally, we present a visco-elasto-plastic model by coupling the visco-elastic and visco-plastic models described previously. In every case, the multiplicative decomposition of the deformation gradient is employed. Regarding the 2D application, we consider both plane strain and plane stress hypothesis, where the latter is solved numerically by a local Newton-Raphson procedure. For the contact problem, we employ the Node-to-Segment strategy, imposing non-penetration conditions with the introduction of Lagrange multipliers. The resulting computational code is tested in each step by means of numerical verification examples. In addition, to show the potentialities of the developed code, several numerical examples are proposed, some of which inspired by existing manufacturing processes. On these examples, we study the effects of different material parameters and strain rates on the numerical response, allowing an analysis of the dissipative behavior due to plasticity and viscosity, including the influence of these on the dynamic damping.
|
3 |
Formulação do método dos elementos de contorno para materiais porosos reforçados / Boundary element method formulation for reinforced porous materialWutzow, Wilson Wesley 16 May 2008 (has links)
Neste trabalho, propõe-se uma formulação não linear baseada no método dos elementos de contorno, para representação de domínios poro-elasto-plásticos reforçados. Esta formulação é apresentada para os casos saturado e não saturado. Para o problema poroso enrijecido um acoplamento com o método dos elementos finitos é empregado, e a técnica de mínimos quadrados permite a regularização dos deslocamentos e do vetor de forças de superfície ao longo das interfaces de acoplamento. São empregadas expressões analíticas para o tratamento das integrais de contorno e de domínio presentes na formulação do método dos elementos de contorno. A formulação de Biot é empregada para a descrição de meios porosos saturados e uma formulação energética baseada nos trabalhos de Coussy é adaptada para a extensão ao caso não saturado. Neste caso, a pressão capilar e energia das interfaces são levadas em consideração. O nível de saturação é descrito pelo modelo de Van Genuchten e o comportamento do esqueleto é descrito ou pelo modelo de Drucker-Prager ou pelo modelo de Cam-Clay modificado. O problema não linear obtido por uma descrição temporal associada a discretização espacial é resolvido pelo método de Newton-Raphson. No caso saturado, o operador tangente consistente é definido e utilizado para obtenção da solução do sistema. Exemplos numéricos são apresentados para validar a formulação proposta. / In this work a nonlinear formulation of the boundary element method (BEM) is proposed to deal with saturated and unsaturated poro-elasto-plastic 2D reinforced domains. To model reinforced porous domains a BEM/FEM (Finite Element Method) modified coupling technique is employed. The coupling is made by using the least square method to regularize the displacement and traction distributions along the interfaces. Analytical expressions have been derived for all boundary and domain integrals required for the formulation. The Biot formulation is used for the description of the saturated porous environments and an energetic consistent formulation based on work of Coussy is adopted for its extension to the framework of unsaturated porous media. In this case, the capillar pressure and the interface energy are taken into account. The Van Genuchten model is used for the determination of saturation level in non-saturated poro-elasto-plastic problems. The Drucker-Prager modified model if used for the saturated poro-elasto-plastic problems and the modified Cam-Clay model for the representation of non-saturated poro-elasto-plastic problems. For the saturated case, the consistent tangent operator is derived and employed inside a Newton procedure to solve non-linear problems. Numerical solutions are presented to validate the proposed models.
|
4 |
Formulação do método dos elementos de contorno para materiais porosos reforçados / Boundary element method formulation for reinforced porous materialWilson Wesley Wutzow 16 May 2008 (has links)
Neste trabalho, propõe-se uma formulação não linear baseada no método dos elementos de contorno, para representação de domínios poro-elasto-plásticos reforçados. Esta formulação é apresentada para os casos saturado e não saturado. Para o problema poroso enrijecido um acoplamento com o método dos elementos finitos é empregado, e a técnica de mínimos quadrados permite a regularização dos deslocamentos e do vetor de forças de superfície ao longo das interfaces de acoplamento. São empregadas expressões analíticas para o tratamento das integrais de contorno e de domínio presentes na formulação do método dos elementos de contorno. A formulação de Biot é empregada para a descrição de meios porosos saturados e uma formulação energética baseada nos trabalhos de Coussy é adaptada para a extensão ao caso não saturado. Neste caso, a pressão capilar e energia das interfaces são levadas em consideração. O nível de saturação é descrito pelo modelo de Van Genuchten e o comportamento do esqueleto é descrito ou pelo modelo de Drucker-Prager ou pelo modelo de Cam-Clay modificado. O problema não linear obtido por uma descrição temporal associada a discretização espacial é resolvido pelo método de Newton-Raphson. No caso saturado, o operador tangente consistente é definido e utilizado para obtenção da solução do sistema. Exemplos numéricos são apresentados para validar a formulação proposta. / In this work a nonlinear formulation of the boundary element method (BEM) is proposed to deal with saturated and unsaturated poro-elasto-plastic 2D reinforced domains. To model reinforced porous domains a BEM/FEM (Finite Element Method) modified coupling technique is employed. The coupling is made by using the least square method to regularize the displacement and traction distributions along the interfaces. Analytical expressions have been derived for all boundary and domain integrals required for the formulation. The Biot formulation is used for the description of the saturated porous environments and an energetic consistent formulation based on work of Coussy is adopted for its extension to the framework of unsaturated porous media. In this case, the capillar pressure and the interface energy are taken into account. The Van Genuchten model is used for the determination of saturation level in non-saturated poro-elasto-plastic problems. The Drucker-Prager modified model if used for the saturated poro-elasto-plastic problems and the modified Cam-Clay model for the representation of non-saturated poro-elasto-plastic problems. For the saturated case, the consistent tangent operator is derived and employed inside a Newton procedure to solve non-linear problems. Numerical solutions are presented to validate the proposed models.
|
Page generated in 0.0803 seconds