• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 9
  • 2
  • 1
  • Tagged with
  • 32
  • 32
  • 17
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sensoriamento ambiental com gymnotiformes (pisces).

Schwertner Filho, Gilberto 08 December 2010 (has links)
Made available in DSpace on 2015-04-20T12:31:43Z (GMT). No. of bitstreams: 1 TESE_GILBERTO.pdf: 7344117 bytes, checksum: 7ee42bd37c36d7f42cd43ff6b511a8d2 (MD5) Previous issue date: 2010-12-08 / Fundação de Amparo à Pesquisa do Estado do Amazonas / A Amazônia Brasileira contém a maior diversidade conhecida de peixes da Ordem Gymnotiformes. Estes peixes elétricos, como são popularmente conhecidos, têm sido intensamente estudados por causa de sua capacidade bioelétrica. Em função destes dois fatores, neste estudo desenvolveu-se procedimentos biotecnológicos para sensoriamento ambiental por meio do processamento e análise das descargas do órgão elétricos (DOEs) de Gymnotiformes. Estes procedimentos geraram subsídios para compor um sistema de alerta ambiental, com peixes elétricos como biossensores de contaminações por petróleo na água, com dois principais fatores modelados: depleção de oxigênio dissolvido (hipoxia) e a presença da fração solúvel de petróleo em água (Benzeno, Tolueno, Etilbenzeno e Xileno - BTEX). Foram desenvolvidos algoritmos computacionais utilizando-se técnicas de inteligência artificial com redes neurais artificiais de múltiplas camadas. Estes algoritmos foram testados para o reconhecimento de padrões nas DOEs de Gymnotiformes, com a classificação por meio de características mais basais da taxa de repetição (pulso e onda), e, com a classificação por Genero de Gymnotiformes onduladores. Redes neurais artificiais de uma camada interna com 64 neurônios, algoritmo de treinamento retropropagativo com renovação das taxas de aprendizados por relações heurísticas e validação cruzada via erro médio quadrático, obtiveram máxima performance na avaliação computacional das DOEs.
12

Estudo da eletrocomunicação em Gymnotus carapo e Gnathothonemus petersii livres por tempos longos mediante protocolos realistas de estimulação / Study of electrocomunication in gymnotus carapo and gnathonemus petersii for long time using realistic stimulation protocols

Caroline Garcia Forlim 12 December 2013 (has links)
A bioeletrogenese tem atraído a atenção da ciência desde a antiguidade. Capazes de produzir campos elétricos e também de sentir estes campos, os peixes elétricos pulsadores de campo fraco são um modelo de estudo praticamente com características únicas em neuroetologia, ja que permitem ao experimentador medir de maneira não invasiva os sinais espaco-temporais envolvidos em pelo menos duas capacidades complexas do sistema nervoso do animal: a eletrolocalizacao (em que e produzida uma imagem elétrica das proximidades) e a eletrocomunicacao (em que os padrões de pulsos são usados para identificar conspecificos, seu sexo, tamanho, resolver disputas de território, etc). Entretanto, como os pulsos geralmente são idênticos em indivíduos de uma mesma espécie e a amplitude do sinal medido depende da distancia dos animais aos eletrodos usados, experimentos com animais livres para se movimentar são muito difíceis de realizar, mais ainda experimentos com mais de um animal interagindo. Por isso, na maioria dos trabalhos encontrados na literatura o comportamento elétrico dos animais e registrado durante curtos intervalos de tempo em que seus movimentos eram bastante restritos ou limitados a agua bem rasa. Além disso, os estímulos eram geralmente compostos por pulsos quadrados ou períodos senoidais apresentados a intervalos regulares. Os protocolos experimentais usados eram sempre unidirecionais, ou seja, não dependiam nem se adaptavam a atividade dos peixes. Para lidar com estas limitações, que acreditamos tornarem o comportamento dos animais muito diferente do que ocorre na natureza, desenvolvemos aparatos experimentais para registrar e estudar o comportamento elétrico e motor de peixes elétricos pulsadores nadando livremente por longos períodos de tempo e que podem ser facilmente adaptados para o estudo de diversas espécies. Utilizamos técnicas de interação em tempo real entre computadores e sistema nervoso vivo, adaptado de protocolos do tipo dynamic clamp, para produzir estímulos elétricos realistas e também estímulos luminosos. Mostramos protocolos de estimulação clássicos unidirecionais bem como bidirecionais, dependentes da atividade dos animais. Aplicamos técnicas de analise de dados baseadas na teoria da informação que permitiram associar a entropia da serie de pulsos do órgão elétrico a movimentação do animal. Aplicamos estes aparatos e técnicas para estudar peixes elétricos de campo fraco de espécies que pertencem a ordens diferentes e, portanto, são o resultado de historias evolutivas distintas: o peixe sul americano G. carapo, da ordem dos Gymnotiformes e o peixe africano G. petersii, da ordem dos Mormyriformes. Obtivemos evidencias de comunicação dos animais e estudamos quais os padrões mais prováveis de disparo em diferentes condições. Uma das espécies apresentou um longo transiente quando exposta a um novo ambiente, evidenciando que as técnicas tradicionais de restringir periodicamente o movimento do peixe não são adequadas para o estudo do comportamento desta espécie. Nossos resultados apresentaram varias evidencias de que os animais são capazes de distinguir estímulos realistas (gravados de conspecificos), de estímulos aleatórios com propriedades estatísticas semelhantes e que há 2 valores de echo response validando a necessidade dos métodos de estimulo desenvolvidos. Também pudemos mostrar que protocolos de estimulação em tempo real bidirecionais, são mais efetivos em interagir com o código do peixe quando comparados com os protocolos unidirecionais tradicionais e que os animais são capazes de aprender a controlar seu comportamento motor e também sua frequência de disparo para evitar estímulos indesejados. / Bioloelectrogenesis is known since ancient times. Weakly electric fish are a wonderful model in Neuroethology because they produce and sense eletric fields. These unique features allow non invasive experiments to access complex spatio-temporal signals involved in 2 tasks called electrocommunication and electrolocation. Electrolocation is the ability to see the surrounding areas /objects by analyzing changes in the fish\'s own electric field and electrocommunication is the ability to identify conspecifics, fight for dominance etc. In this last task fish have their electric field distorted by conspecifics\' eletric organ discharges. Usually, within species, pulse-type weakly electric fish discharge pulses with similar waveform and the amplitude of the pulse depends on the distance to the recording electrodes being very difficult to measure the discharges in freely swimming animals, specially when 2 or more animals are interacting. For these reasons, most studies found in the literature are done with restrained animals or in shallow tanks. The most commom stimuli used are square/sine waves or very short pre-recorded discharges in classic protocol where the stimuli do not depend on the fish\'s activity. To overcome these issues trying to perform more naturalistic experiments, we developed experimental setups to record the electric and motor behavior in freely pulse-type electric fish for long periods. Our setups have also the advantage of being easy to adapt making possible to study several species. We performed real time experiments with realistic electric and light stimuli using dynamic clamp techniques adapted to Neuroethology. We show both classic unidirectional protocols as well as bidirectional closed loop interaction, taking into account the fish\'s dynamic activity. Analyzes based on Information Theory revealed that the entropy of the electric organ discharges are correlated to the their movement. We performed experiments using the setups and techniques mentioned before in 2 species that have evolved independently: G. Carapo (Gymnotidae) from South America and G. petersii (Mormyridae) from Africa. We show evidence of real communication and we study the inter pulse discharge probability in different behavioral circumstances. One specie showed a long transient behavior when introduced in new environment, hence, the traditional experiments with restrained animals might not be suitable to study natural behavior. Our results show several evidences that the fish can distinguish between realist stimuli from conspecifics and random ones, that there are 2 values of echo response instead of 1, demonstrating the importance of our new setup and protocols. We could also show that closed loop protocols were more effective to stimulate and interact with the fish\'s activity and that the animals are able to control their motor and electric behavior avoiding possibly harmful stimulation.
13

The Effect of male-male competition and its Underlying Regulatory Mechanisms on the Electric Signal of the Gymnotiform fish <em>Brachyhypopomus gauderio</em>

Salazar, Vielka Lineth 30 October 2009 (has links)
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.
14

Behavioural Syndromes: Implications for Electrocommunication in a Weakly Electric Fish Species

Shank, Isabelle January 2013 (has links)
Behavioural syndromes, defined as suites of correlated behaviours across different contexts, are used to characterize individual variability in behaviours. Males of the weakly electric fish species, Apteronotus leptorhynchus, produce electro-communication signals called chirps. Chirps are thought to be involved in agonistic signalling, as their relative incidence increases during agonistic conspecific interactions. However, high levels of individual variability in aggression obscure the role of chirps in mediating aggression. Here, I tested the presence of an aggression-boldness behavioural syndrome, and then considered the implications such a syndrome would have on chirping behaviours. Behavioural tests in anti-predation, object novelty, feeding, conspecific intrusion and novel environment exploration contexts revealed a syndrome involving only object novelty and feeding. We found no correlation between chirping behaviour and the assessed behaviours. Our results demonstrate that chirps represent a more complex communication system than previously suggested.
15

Social and Environmental Regulation of Signal Plasticity and Signal Reliability in the Electric Fish Brachyhypopomus gauderio

Gavassa Becerra, Sat 28 June 2012 (has links)
The balance between the costs and benefits of conspicuous signals ensures that the expression of those signals is related to the quality of the bearer. Plastic signals could enable males to maximize conspicuous traits to impress mates and competitors, but reduce the expression of those traits to minimize signaling costs, potentially compromising the information conveyed by the signals. I investigated the effect of signal enhancement on the information coded by the biphasic electric signal pulse of the gymnotiform fish Brachyhypopomus gauderio. Increases in population density drive males to enhance the amplitude of their signals. I found that signal amplitude enhancement improves the information about the signaler’s size. Furthermore, I found that the elongation of the signal’s second phase conveys information about androgen levels in both sexes, gonad size in males and estrogen levels in females. Androgens link the duration of the signal’s second phase to other androgen-mediated traits making the signal an honest indicator of reproductive state and aggressive motivation. Signal amplitude enhancement facilitates the assessment of the signaler’s resource holding potential, important for male-male interactions, while signal duration provides information about aggressive motivation to same-sex competitors and reproductive state to the opposite sex. Moreover, I found that female signals also change in accordance to the social environment. Females also increase the amplitude of their signal when population density increases and elongate the duration of their signal’s second phase when the sex ratio becomes female-biased. Indicating that some degree of sexual selection operates in females. I studied whether male B. gauderio use signal plasticity to reduce the cost of reproductive signaling when energy is limited. Surprisingly, I found that food limitation promotes the investment in reproduction manifested as signal enhancement and elevated androgen levels. The short lifespan and single breeding season of B. gauderio diminishes the advantage of energy savings and gives priority to sustaining reproduction. I conclude that the electric signal of B. gauderio provides reliable information about the signaler, the quality of this information is reinforced rather than degraded with signal enhancement.
16

Developing Tools towards Ion Homeostasis in Spatially Polarized Excitable Cells

Liu, Ziyi 16 January 2024 (has links)
In 1800, Volta, inspired by the electric organs of a genus of electric fish, the Electrophorus, invented the first electric batteries, which were termed "artificial electric organs." Since then, the far-reaching implications of the fishes’ electrogenesis have come under greater attention and interest. In these fishes, the electric organ resembles a series of batteries. The electric organs are formed by electrocytes (the "batteries") with a distinct cytomorphology for discharging and charging. Although the arrangements of electrocytes in the electric organ are well-understood, the mechanisms involved in generating electric discharges within equivalent circuits remain unclear. In this thesis, the first element consists of adapting spatially defined models that we use to investigate the process of electrocyte charging and recharging under the added assumption of ion homeostasis, the process by which a cell restores its internal milieu. The study focuses on Eigenmannia and Electrophorus, two genera of electric fish. Eigenmannia's steady high-frequency dipole oscillator-like electric organ discharges enables electro-sensing and electro-communication, whilst Electrophorus's brief taser-like electric bursts serve as tetanizing predatory assaults. In addition, the second section of this study proposes a one-dimensional charge difference model that focuses on the modification of endogenous electric fields resulting from the uneven distribution of ions in a homeostatic apparatus.
17

Changes in Trajectories of Foraging Agents Under Spatial Learning

Mirmiran, Camille 28 November 2022 (has links)
The goal of this thesis is to identify differences and consistencies in the trajectories taken by foraging agents before and after they have learned the location of a target. The challenge is that these agents do not go directly towards the target after learning and keep a certain amount of randomness in their paths. We use different versions of discrete curvature and head angle as tools in this analysis. We also build models of foraging agents using stochastic processes with data supported parameters.
18

Estudo experimental da eletrocomunicação em peixes de campo elétrico fraco da espécie Gymnotus carapo - uma aplicação da Teoria da Informação / Experimental study of electrocommunication in weakly electric fish from the Gymnotus carapo species - an application of Information Theory

Forlim, Caroline Garcia 27 August 2008 (has links)
Construímos um aparato experimental para medir os instantes de disparo do órgão elétrico de peixes elétricos de campo fraco da espécie Gymnotus carapo, que produz estes pulsos para localizar objetos dentro da água e para se comunicar socialmente. O aparato foi desenvolvido de maneira a iisolar o animal de perturbações externas como vibrações mecânicas, sons, campos elétricos e variações de luminosidade do ambiente. A principal característica de nosso aparato é um conjunto de eletrodos, distribuídos nos vértices do tanque de experimentos, que permitem obter as medidas (longas séries de instantes de disparo) sem restringir os movimentos do peixe e até mesmo inferir a sua posição comparando as amplitudes em diferentes eletrodos, o que possibilita relacionar a posteriori os padrões de disparo ao comportamento do animal. Desenvolvemos um programa de computador em linguagem C que, através de uma interface digital­analógica reproduz a série temporal da voltagem de um pulso de um peixe verdadeiro e utilizamos este sinal elétrico para estimular os animais. Os pulsos artificiais foram aplicados a um dipolo elétrico que imita a geometria do órgão elétrico de um peixe e os intervalos entre pulsos foram produzidos por diferentes distribuições: aleatória, intervalos gravados previamente do próprio ou de outro peixe, sequências manipuladas para repetir determinados trechos reais intercalados com trechos aleatórios, etc. Um segundo computador foi utilizado para detectar os instantes dos pulsos de estímulo e resposta e armazenar estas sequências em arquivos. Posteriormente utilizamos estas sequências para calcular a informação mútua média entre os sinais e verificamos que diferentes peixes reconhecem e reagem (alterando seus disparos elétricos) a determinados trechos da série de estímulo real de maneira bastante reprodutível. Também desenvolvemos outro programa de controle para detectar os pulsos do peixe em um dos aquários e estimular, em tempo real, o peixe de outro aquário e vice­versa. Assim, a única forma de interação entre os peixes é através dos pulsos elétricos e esta interação ocorre de modo bidirecional. Os dados destes experimentos também foram analisados utilizando o cálculo da informação mútua média entre os padrões dos dois peixes e encontramos evidências de que neste caso o fluxo de informação é maior que nos experimentos unidirecionais. Nosso aparato permitiu utilizar com sucesso a teoria da informação para estudar a dinâmica de disparo durante a interação elétrica entre peixes e possibilita diversos experimentos futuros em que pretendemos relacionar os padrões elétricos ao comportamento social dos animais e a sua interação com o meio ambiente. / We built an experimental apparatus to measure the electric organ discharge times from weakly electric fishes of the Gymnotus carapo species. Such fishes use these pulses to actively locate objects in water as well as in social communication. Our apparatus was designed to allow such measures in the absence of some external perturbations the fishes are sensitive to, such as mechanical vibrations, electric fields and changes in the laboratory luminosity. A set of eight electrods were installed in the corners of the experimental tank and allows to obtain the discharge times without need to restrain the movements of the fish. Actually, from the maximal amplitudes of the discharge in different elecrodes we can infer the position and movements of the fish and relate its electrical dynamics to its behavior. A computer program (C language) was written to use a digital to analog interface to reproduce the time series of a discharge pulse from a real fish (recorded previously) and this electrical signal was used to stimulate the animals. The artificial pulses were applied to an electrical dipole built to mimic the geometry of the electrical organ of a living fish. The intervals between discharges were chosen from sequences obtained from different distributions: random, sequencies from real living fishes, handled sequencies where we repeated some real patterns with random patterns in between, etc. The detection of the stimuli and response pulses were done in another computer with the software Dasylab and the discharge times sequencies were recorded in harddisk for further analysis. Both sequencies were used to compute the average mutual information between the signals and we verified that different fishes recognize and react (changing their pulse interval pattterns) to the same regions of the real stimuli sequence. We also developed another control program (C language) to detect the discharges of a fish in one tank and to stimulate, in real time, a fish in another tank with those pulses, and vice­versa, in a bidirectional way. In this way, the only interaction between the fishes is through their electric pulses. The data analysis also consisted in obtaining the average mutual information between the sequencies of the two fishes and we found evidences that the flow of information is higher than that found in unidirectional experiments. Our apparatus allowed us to succesfully apply information theory to study the dynamics of the discharge intervals when the fishes are interacting. In the future we intend to extensivelly use such experiments to relate the electrical patterns to social behavior and to the interaction of these fishes with their environment.
19

Eletrocomunicação em Gymnotus carapo: definição de unidades linguísticas e sua relação com o papel de dominância / Electrocommunication in Gymnotus carapo: definition of linguistic units and its relationship with the dominance role

Guariento, Rafael Tuma 01 February 2019 (has links)
A habilidade que peixes elétricos possuem de se comunicar por meio de um campo elétrico auto-gerado tem atraído a atenção de diversas áreas do conhecimento por mais de 50 anos. Em particular, peixes elétricos pulsadores emitem um sinal que apresenta diversas similaridades com trens de pulsos de neurônios, tornando-se um modelo animal em neurociência. Com o aumento do poder computacional e com o desenvolvimento de novas ferramentas de aprendizagem de máquina, tornou-se possível investigar interações de dominância entre um par de peixes a nível de cada pulso emitido. Até onde se sabe, a codificação e transmissão de informação se dá por modulações nos intervalos entre pulsos. Assim, a comunicação entre peixes é um problema similar à comunicação entre um par de neurônios em áreas relacionadas do sistema nervoso central: a modulação da taxa de disparo de um neurônio é codificada a partir dos pulsos do outro. Neste trabalho investigamos interações sociais entre pares de Gymnotus carapo, uma espécie altamente territorial. Utilizando análise de séries temporais, técnicas de aprendizagem de máquina e teoria da informação, desenvolvemos uma metodologia para detectar padrões comunicativos nos pulsos emitidos pelos peixes. Além disso, observamos uma relação de causalidade na emissão de padrões: apenas um dos peixes modifica o comportamento futuro de seu coespecífico. A direção desse fluxo de informação parece ligada ao papel de dominância/submissão assumido pelo indivíduo. A partir da literatura sobre fisiologia de emissão de novos pulsos, levantamos novas hipóteses sobre o funcionamento dos sistemas neurais responsáveis pela modulação dos intervalos entre pulsos e sobre como estes sistemas podem ter sua sensibilidade modificada por hormônios secretados durante a disputa por dominância. / Weakly electric fishs ability to communicate through a self-generated electric field has attracted attention from several areas of knowledge for more than 50 years. Particularly, pulse-type electric fish emit signals that exhibits several similarities with neuronal spike trains, becoming a popular animal model in neuroscience. Due to the increase of computational power and the development of new machine learning tools, it is now possible to investigate dominance interactions between a pair of fish at the level of every single pulse. As far as we know, information is coded and transmitted by modulation of interval between pulses. Thus, communication between electric fishes presents several similarities with the communication between neurons from different regions on the central nervous system: the spike rate of one neuron is modulated by the pulses emitted by the other. Here we investigated the social interactions between pairs of Gymnotus carapo, a highly territorial species. Using time series analysis, machine learning techniques, and information theory, we developed a methodology to identify communicative patterns in the pulses emitted by the fish. In addition, we observed a causal relation on the pattern emission: only one of the fish modifies the future behavior of its conspecific. This flow of information seems to be related to the dominance/submission role assumed by each individual. From the literature on the physiology of the emission of new pulses, we developed new hypotheses about the functioning of the neural systems responsible for modulating the intervals between pulses and on how these systems can be modified by hormones secreted during a dominance contest.
20

Estudo experimental da eletrocomunicação em peixes de campo elétrico fraco da espécie Gymnotus carapo - uma aplicação da Teoria da Informação / Experimental study of electrocommunication in weakly electric fish from the Gymnotus carapo species - an application of Information Theory

Caroline Garcia Forlim 27 August 2008 (has links)
Construímos um aparato experimental para medir os instantes de disparo do órgão elétrico de peixes elétricos de campo fraco da espécie Gymnotus carapo, que produz estes pulsos para localizar objetos dentro da água e para se comunicar socialmente. O aparato foi desenvolvido de maneira a iisolar o animal de perturbações externas como vibrações mecânicas, sons, campos elétricos e variações de luminosidade do ambiente. A principal característica de nosso aparato é um conjunto de eletrodos, distribuídos nos vértices do tanque de experimentos, que permitem obter as medidas (longas séries de instantes de disparo) sem restringir os movimentos do peixe e até mesmo inferir a sua posição comparando as amplitudes em diferentes eletrodos, o que possibilita relacionar a posteriori os padrões de disparo ao comportamento do animal. Desenvolvemos um programa de computador em linguagem C que, através de uma interface digital­analógica reproduz a série temporal da voltagem de um pulso de um peixe verdadeiro e utilizamos este sinal elétrico para estimular os animais. Os pulsos artificiais foram aplicados a um dipolo elétrico que imita a geometria do órgão elétrico de um peixe e os intervalos entre pulsos foram produzidos por diferentes distribuições: aleatória, intervalos gravados previamente do próprio ou de outro peixe, sequências manipuladas para repetir determinados trechos reais intercalados com trechos aleatórios, etc. Um segundo computador foi utilizado para detectar os instantes dos pulsos de estímulo e resposta e armazenar estas sequências em arquivos. Posteriormente utilizamos estas sequências para calcular a informação mútua média entre os sinais e verificamos que diferentes peixes reconhecem e reagem (alterando seus disparos elétricos) a determinados trechos da série de estímulo real de maneira bastante reprodutível. Também desenvolvemos outro programa de controle para detectar os pulsos do peixe em um dos aquários e estimular, em tempo real, o peixe de outro aquário e vice­versa. Assim, a única forma de interação entre os peixes é através dos pulsos elétricos e esta interação ocorre de modo bidirecional. Os dados destes experimentos também foram analisados utilizando o cálculo da informação mútua média entre os padrões dos dois peixes e encontramos evidências de que neste caso o fluxo de informação é maior que nos experimentos unidirecionais. Nosso aparato permitiu utilizar com sucesso a teoria da informação para estudar a dinâmica de disparo durante a interação elétrica entre peixes e possibilita diversos experimentos futuros em que pretendemos relacionar os padrões elétricos ao comportamento social dos animais e a sua interação com o meio ambiente. / We built an experimental apparatus to measure the electric organ discharge times from weakly electric fishes of the Gymnotus carapo species. Such fishes use these pulses to actively locate objects in water as well as in social communication. Our apparatus was designed to allow such measures in the absence of some external perturbations the fishes are sensitive to, such as mechanical vibrations, electric fields and changes in the laboratory luminosity. A set of eight electrods were installed in the corners of the experimental tank and allows to obtain the discharge times without need to restrain the movements of the fish. Actually, from the maximal amplitudes of the discharge in different elecrodes we can infer the position and movements of the fish and relate its electrical dynamics to its behavior. A computer program (C language) was written to use a digital to analog interface to reproduce the time series of a discharge pulse from a real fish (recorded previously) and this electrical signal was used to stimulate the animals. The artificial pulses were applied to an electrical dipole built to mimic the geometry of the electrical organ of a living fish. The intervals between discharges were chosen from sequences obtained from different distributions: random, sequencies from real living fishes, handled sequencies where we repeated some real patterns with random patterns in between, etc. The detection of the stimuli and response pulses were done in another computer with the software Dasylab and the discharge times sequencies were recorded in harddisk for further analysis. Both sequencies were used to compute the average mutual information between the signals and we verified that different fishes recognize and react (changing their pulse interval pattterns) to the same regions of the real stimuli sequence. We also developed another control program (C language) to detect the discharges of a fish in one tank and to stimulate, in real time, a fish in another tank with those pulses, and vice­versa, in a bidirectional way. In this way, the only interaction between the fishes is through their electric pulses. The data analysis also consisted in obtaining the average mutual information between the sequencies of the two fishes and we found evidences that the flow of information is higher than that found in unidirectional experiments. Our apparatus allowed us to succesfully apply information theory to study the dynamics of the discharge intervals when the fishes are interacting. In the future we intend to extensivelly use such experiments to relate the electrical patterns to social behavior and to the interaction of these fishes with their environment.

Page generated in 0.0717 seconds