• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of HomePlug Green Phy standard (ISO15118) into Electric Vehicle Supply Equipment

Pallander, Rama January 2021 (has links)
As the use of electric vehicles increases, the need for electric vehicle supply equipment to have more advanced functionality also increases. The HomePlug Green PHY standard was developed to allow more advanced communication between electric vehicles and electric vehicle supply equipment. This more advanced form of communication can solve problems such as load balancing during busy charging and seamless payment methods. There are some modem solutions that are based on the Qualcomm QCA7000 chip that allows for implementation of the HomePlug Green PHY standard.             This thesis explores and highlights the implementation of the hardware for the HomePlug Green PHY standard into a solution that is nearly plug and play for most electric vehicles. A module in the form of a PCB based around one of these modem solutions is developed that allows modular expansion of a traditional electric vehicle supply equipment to gain the functionality of HomePlug Green PHY. The final PCB is a near plug and play solution on the hardware side however, the software needs further development.
2

Interactions of Connected Electric Vehicles with Modern Power Grids in Smart Cities

Alghamdi, Turki 10 August 2021 (has links)
In a smart city, it is vital to provide a clean and green environment by curbing air pollution and greenhouse gas emissions (GHGs) from transportation. As a recent action from many governments aiming to minimize transportation’s pollution upon the climate, new plans have been announced to ban cars with gas engines throughout the world. Therefore, it is anticipated that the presence of electric vehicles (EVs) will grow very fast globally. Consequently, the necessity to establish electric vehicle supply equipment (EVSE) in the smart city through public charging stations is growing incrementally year by year. However, the EV charging process via EVSE which is primarily connected to the power grid will put high pressure upon the centralized power grid, especially during peak demand periods. Increasing the power production of power grid will increase the environmental impact. Therefore, it is fundamental for the smart city to be equipped with a modern power grid to cope with the traditional power grid’s drawbacks. In this thesis, we conduct an in-depth analysis of the problem of EVs’ interaction with the modern power grid in a smart city to manage and control EV charging and discharging processes. We also present various approaches and mechanisms toward identifying and investigating these challenges and requirements to manage the power demand. We propose novel solutions, namely Decentralized-EVSE (D-EVSE), for EVs’ charging and discharging processes based on Renewable Energy Sources (RESs) and an energy storage system. We present two algorithms to manage the interaction between EVs and D-EVSE while maximizing EV drivers’ satisfaction in terms of reducing the waiting time for charging or discharging services and minimizing the stress placed on D-EVSE. We propose an optimization model based on Game Theory (GT) to manage the interaction between EVs and D-EVSE. We name this the decentralized-GT (D-GT) model. This model aims to find the optimal solution for EVs and D-EVSE based on the concept of win-win. We design a decentralized profit maximization algorithm to help D-EVSE take profit from the electricity price variation during the day when selling or buying electricity respectively to EVs or from the grid or EVs as discharging processes. We implement different scenarios to these models and show through analytical and simulation results that our proposed models help to minimize the D-EVSE stress level, increase the D-EVSE sustainability, maximize the D-EVSE profit, as well as maximize EV drivers’ satisfaction and reduce EVs’ waiting time.
3

Market analysis for electric vehicle supply equipment : The case of China / Analys av marknaden för laddningsutrustning för elbilar : Fallet Kina

BUSK, ANDREY, JOELSSON WARRENSTEIN, ARVID January 2014 (has links)
Personliga eldrivna fordon (EV) är ett nytt teknikområde som är på väg att uppnå stort momentum på flera av världens marknader. Eftersom branschen fortfarande ligger i sin linda finns det i nuläget inga tydliga strukturer, som gäller för alla marknader världen över, gällande relationerna mellan aktörer, vilket leder till osäkerheter när det kommer till att ta strategiska beslut. Uppdragsgivaren för denna studie är Hong Kong EV Power Ltd. (EV Power), en Hongkong-baserad leverantör av laddningsstationer för elbilar och relaterade tjänster, som har ambitionen att inträda marknaden på det kinesiska fastlandet inom den närmaste framtiden. Emellertid har EV Power ännu inte bestämt sig vilken stad de vill rikta in sig på i det första skedet. Denna avhandling ämnar formulera en modell som kan användas för att utvärdera och jämföra geografiska marknader med avseende på lämpligheten för ett marknadsinträde av en leverantör av laddningsstationer för elbilar. Dessutom kommer modellen testas på tre städer på kinas fastland (Peking, Shanghai och Shenzhen), med syfte att komma fram till vilken stad som är mest attraktiv för EV Power, samt att utvärdera modellens funktionsduglighet. Sist kommer resultaten från utvärderingen av de tre städerna att tjäna som utgångspunkten för en analys som ämnar ta fram framgångsfaktorer för ett marknadsinträde på kinas fastland. För att uppnå detta har fyra olika datainsamlingsmetoder använts: Först studerades teori, med syfte att få bakgrundskunskap likväl som att få förståelse för specifika faktorer som påverkar ett marknadsinträde som detta. För det andra observerades EV Powers nuvarande verksamhet i Hong Kong, i avsikt att förstå vad som har lett till den framgång som företaget upplevt på sin hemmamarknad. För det tredje intervjuades branschexperter för att få ett perspektiv på branschen som helhet. Sist samlades sekundär data kring de tre städerna in, för att kunna utvärdera de olika faktorerna som ingår i den framtagna modellen. Den slutgiltiga modellen består av fem faktorer som påverkar en stads attraktivitet för ett marknadsinträde av en leverantör av laddningsstationer för elbilar. De identifierade faktorerna är: ’Marknadens tillgänglighet’, ’Kortsiktig efterfrågan’, ’Förväntad marknadsandel’, ’Vinstmarginal’ och ’Långsiktig produktpotential’. Dessa faktorer är i sin tur indelade i subfaktorer som har sina egna uppsättningar av drivare. Efter att ha använt modellen för att utvärdera de tre städerna konstaterades det att Shanghai är den lämpligaste staden för ett marknadsinträde av EV Power, främst på grund av stadens dominans på marknaden för privatanvända elbilar och ett gynnsamt regelverk. Slutligen hittades tre framgångsfaktorer för ett sådant inträde: ’Fokusera på tjänster’, ’Bibehåll partner-relationer’ och ’Inträd tidigt’. / Personal electric vehicles (EV) is an emerging technology that has gained much momentum in several markets during the past decade, and China is currently one of the markets where the growth in EV sales is the highest. Since the industry is still in its infancy, there are currently no clear structures regarding the relationships between different actors that apply to all markets globally, leading to great uncertainty in strategic decisions. The commissioner of this study is Hong Kong EV Power Ltd. (EV Power), a producer of EV supply equipment (EVSE) and related services in Hong Kong, which aspires to enter the Chinese mainland in the near future. However, EV Power has yet to decide which city they want to target first. This thesis aims to formulate a model that can be used to evaluate and compare geographic markets for a market entry by an EVSE company. Furthermore, the model is tested on three cities in Mainland China (Beijing, Shanghai and Shenzhen), in order to derive the most attractive city for EV Power and to evaluate the adequacy of the model. Lastly, with the results from the city evaluation, as a point of departure, success factors for an entry into Mainland China by the commissioning company will be summarized. In order to achieve this objective, four distinct data collection methods have been used: First, theory was studied, in order to gain background knowledge as well as to understand specific factors that impact a market entry decision such as this. Second, EV Power’s current business in Hong Kong was observed, with a view to achieve an understanding of what has led the company to experience success in its home market. Third, Interviews with industry experts were conducted, so as to get a perspective on the industry as a whole. Fourth and last, secondary data for the different cities was collected, for the sake of evaluating them according to the developed model. The final model consists of five main factors that encompass the elements that influence a cities level of attractiveness for entry by an EV charging station supplier. The identified factors are: ‘Market accessibility’, ‘Short-term demand’, ‘Expected market share’, ‘Profit margin’, and ‘Long-term product potential’. These factors are in turn divided into sub factors that have their own set of drivers. Using the model to evaluate the cities, it was found that Shanghai is the most suitable city for a market entry by EV Power, mainly due to its dominance in the market for private EVs and a favourable regulatory environment. Finally, three main success factors, for such a market entry, were found: ‘Focus on services’, ‘Maintain partner relationships’, and ‘Enter early’.

Page generated in 0.0818 seconds