Spelling suggestions: "subject:"electrical bioimpedance spectroscopy"" "subject:"alectrical bioimpedance spectroscopy""
1 |
Hook Effect on Electrical Bioimpedance Spectroscopy Measurements. Analysis, Compensation and CorrectionBuendía, Rubén January 2009 (has links)
Nowadays, the Electrical Bioimpedance (EBI) measurements have become a commonpractice as they are useful for different clinical applications. EBI technology and EBImeasurement systems are relatively simple when compared to other type of medicalinstrumentation. But even in such simple measurement systems measurement artifact mayoccur. One of the most common artifacts present measurements is the Hook Effect, which isidentifiable by the hook-alike deviation on the EBI data that it produces on the impedanceplot.The Hook Effect influences typical EBI data analysis processes like Cole fitting processand the estimation of the Cole parameters, which are critical for several EBI applications.Therefore the Hook Effect must be corrected, compensated or removed before the any fittingprocess.With the goal of finding a reliable correction method the origin and the impact on theEBI measurement of the Hook Effect is studied in this thesis. The currently used Tdcompensation method is also studied and a new approach for compensation and correction ispresented.The results indicate that the proposed method truly corrects the Hook Effect and that themethodology to select the correcting parameters is solid based on the origin of the Hook Effectand it is extracted from the EBI measurement it-self avoiding any external dependency.
|
2 |
Cole Model Analysis of EBIs Neonatal Cerebral MeasurementsSharad Dhanpalwar, Prathamesh, Chen, Xinyuan January 2010 (has links)
The concept of Electrical Bio Impedance prevails in this thesis. The EBI measurement which is used for obtaining the body composition is, by virtue of time becoming of great use as its one of the easiest method of finding out the body composition. In simple words, EBI is the opposition offered by the body to the current. It is just like another analysis tool. The result is only as good as the test is done. In this thesis, we have done the analysis on the neonatal EBI measurements of two kinds.In this work, 293 measurements are obtained from 12 babies and 230 measurements are obtained from 7 babies have been analyzed with the purpose of obtaining reference values for the spectrum of complex EBI. The analysis uses both statistical and model approach of obtaining reference values and in order to fit the given data, Cole model analysis is used.Filters were applied to get the highest degree of correctness. In the due course of the filtering, it was found that the measurements from some babies have been deleted. The Standard Error of Estimation (S.E.E.) is a parameter used for obtaining the further reliable and most probable output. The further analysis is done using MATLAB and the results are been compared to the previous analysis report.
|
3 |
MATLAB suite for removing the capacitive leakage effect from EBI Spectroscopic dataDanish Siddiqui, Muhammad, Gopi, Suhasini January 2011 (has links)
Electrical Bioimpedance (EBI) is the opposition offered by the biological material to theflow of electric current. Nowadays EBI technology is widely used for total body compositionand body fluid distribution.In this project a software suite is developed by using the GUI tool of Matlab, thissoftware is meant to help to remove artefacts from the EBI measurement and to visualize theEBIS measurements and the processing performed on them.Hook effect is one of the major artefacts found in EBI measurements, which createsproblems in any analysis. To eliminate the Hook effect some methods are followed. The data’sare processed using these methods and they are visualized. For the better understanding, bothraw data and the corrected data are plotted in impedance and admittance plots. The correcteddata is stored for further use and analysis.
|
4 |
Methods for Cole Parameter Estimation from Bioimpedance Spectroscopy MeasurementsAyllón, David January 2010 (has links)
No description available.
|
5 |
Development of a Software Application Suite for Electrical Bioimpedance Data AnalysisRodríguez Portero, Alejandro January 2010 (has links)
No description available.
|
6 |
ELECTRICAL BIOIMPEDANCE CEREBRAL MONITORING : A Study of Cerebral Impedance Variation / ÖVERVAKNING AV HJÄRNAN MED ELEKTRISK BIOIMPEDANS : En Studie om Cerebrala ImpedansändringarMokhberi, Shiva January 2016 (has links)
Stroke is amongst the leading causes of death and disability worldwide. Today diagnosis of Stroke is restricted to fixed imaging facilities which do not provide a rapid diagnostic. A portable device which could provide a non invasive assessment of stroke would therefore decrease the time of diagnosis and increase the chance of survival. Recent studies have confirmed that Implementing Electrical Bioimpedance in a portable device could provide a reliable means for Stroke diagnostic. However in order to be able to use the brain impedance as an indicator of Stroke, the invariance of brain impedance with time in healthy individuals should be studied first. Experimental Bioimpedance Spectroscopy (BIS) measurements from a healthy control group of 10 subjects have been used in this study to inspect the variation of brain impedance in the span of two weeks. The results of this study suggest that the cap which was used for brain impedance measurements together with the available device have not been an optimal way of measuring the brain impedance and therefore have affected the data by causing artifacts for the results. With the artifacts available in the data acquired in this study it is not possible to make any statements about the variation of brain impedance and therefore a deeper analysis of collected data using descriptive analysis is required in order to be able to judge on the significance of the obtained errors. In the future a larger study group should be considered in order to increase the predictive power of the observations. / Stroke är bland de ledande orsakerna till död och funktionshinder i hela världen.I dagsläget är diagnos av stroke begränsad till fasta bildenheter som inte möjliggör en snabb diagnos. En bärbar enhet som möjliggör en icke invasiv bedömning av sjukdomen skulle minska diagnos tiden och följaktligen öka chansen att överleva sjukdomen. Genomförda studier i ämnet har bekräftat att implementering av Electrical Bioimpedance i en bärbar enhet kan räknas som ett effektivt sätt för Stroke diagnostik. För att kunna använda hjärnans impedans för Stroke diagnostik, bör först en studie av hjärnans impedans på friska individer utföras för att kunna visa att impedansen är oförändrad med tiden. Experimentell Bioimpedans Spektroskopi (BIS) mätningar från en frisk kontrollgrupp av 10 försökspersoner har utförts i denna studie för att inspektera variationen av hjärnans impedans under två veckor. Resultaten från denna studie tyder på att sättet av impedans mätningen i dagsläget är inte optimalt. Artefakter presenterad i resultatet gör det omöjligt för att kunna komma till ett beslut om hjärnans impedans variation . För fortsätta studier bör man överväga en större kontrollgrupp och även en analysering av data med hjälp av t-statistik som var inte inom ramen av denna studie.
|
7 |
Aspects of Electrical Bioimpedance Spectrum EstimationAbtahi, Farhad January 2014 (has links)
Electrical bioimpedance spectroscopy (EBIS) has been used to assess the status or composition of various types of tissue, and examples of EBIS include body composition analysis (BCA) and tissue characterisation for skin cancer detection. EBIS is a non-invasive method that has the potential to provide a large amount of information for diagnosis or monitoring purposes, such as the monitoring of pulmonary oedema, i.e., fluid accumulation in the lungs. However, in many cases, systems based on EBIS have not become generally accepted in clinical practice. Possible reasons behind the low acceptance of EBIS could involve inaccurate models; artefacts, such as those from movements; measurement errors; and estimation errors. Previous thoracic EBIS measurements aimed at pulmonary oedema have shown some uncertainties in their results, making it difficult to produce trustworthy monitoring methods. The current research hypothesis was that these uncertainties mostly originate from estimation errors. In particular, time-varying behaviours of the thorax, e.g., respiratory and cardiac activity, can cause estimation errors, which make it tricky to detect the slowly varying behaviour of this system, i.e., pulmonary oedema. The aim of this thesis is to investigate potential sources of estimation error in transthoracic impedance spectroscopy (TIS) for pulmonary oedema detection and to propose methods to prevent or compensate for these errors. This work is mainly focused on two aspects of impedance spectrum estimation: first, the problems associated with the delay between estimations of spectrum samples in the frequency-sweep technique and second, the influence of undersampling (a result of impedance estimation times) when estimating an EBIS spectrum. The delay between frequency sweeps can produce huge errors when analysing EBIS spectra, but its effect decreases with averaging or low-pass filtering, which is a common and simple method for monitoring the time-invariant behaviour of a system. The results show the importance of the undersampling effect as the main estimation error that can cause uncertainty in TIS measurements. The best time for dealing with this error is during the design process, when the system can be designed to avoid this error or with the possibility to compensate for the error during analysis. A case study of monitoring pulmonary oedema is used to assess the effect of these two estimation errors. However, the results can be generalised to any case for identifying the slowly varying behaviour of physiological systems that also display higher frequency variations. Finally, some suggestions for designing an EBIS measurement system and analysis methods to avoid or compensate for these estimation errors are discussed. / <p>QC 20140604</p>
|
8 |
Projeto de circuito oscilador controlado numericamente implementado em CMOS com otimização de área. / Design of a circuit numerically controlled oscilator implemented in CMOS with area optimization.Carvalho, Paulo Roberto Bueno de 25 October 2016 (has links)
Este trabalho consiste no projeto e implementação em CMOS de um circuito integrado digital para geração de sinais, denominado Oscilador Controlado Numericamente. O circuito será aplicado em um sistema de Espectroscopia por Bioimpedância Elétrica, utilizado como método para detecção precoce de câncer do colo do útero. Durante o trabalho, realizou-se o estudo dos requisitos do sistema de espectroscopia e as especificações dos tipos de sinais a serem gerados. Levantou-se, na bibliografia, algumas técnicas de codificação em linguagem de hardware para otimização do projeto nos quesitos área, potência dissipada e frequência máxima de funcionamento. Para implementar o circuito, também se pesquisou o fluxo de projeto de circuitos digitais, focando as etapas de codificação em linguagem de descrição de hardware Verilog e os resultados de síntese lógica e de layout. Foram avaliadas duas arquiteturas, empregando-se algumas das técnicas de codificação levantadas durante o estudo bibliográfico. Estas arquiteturas foram implementadas, verificadas em plataforma programável, sintetizadas e mapeadas em portas lógicas no processo TSMC 180 nm, onde foram comparados os resultados de área e dissipação de potência. Observou-se, nos resultados de síntese lógica, redução de área de 78% e redução de 83% na dissipação de potência total no circuito em que se aplicou uma das técnicas de otimização em comparação com o circuito implementado sem otimização, utilizando uma arquitetura CORDIC do tipo unrolled. A arquitetura com menor área utilizada - 0,017 mm2 - foi escolhida para fabricação em processo mapeado. Após fabricação e encapsulamento do circuito, o chip foi montado em uma placa de testes desenvolvida para avaliar os resultados qualitativos. Os resultados dos testes foram analisados e comparados aos obtidos em simulação, comprovando-se o funcionamento do circuito. Observou-se uma variação máxima de 0,00623% entre o valor da frequência do sinal de saída obtido nas simulações e o do circuito fabricado. / The aim of this work is the design of a digital integrated circuit for signal generation called Numerically Controlled Oscillator, designed in 180 nm CMOS technology. The application target is for Electrical Bioimpedance Spectroscopy system, and can be used as a method for early detection of cervical cancer. Throughout the work, the spectroscopy system requirements and specifications of the types of signals to be generated were studied. Furthermore, the research of some coding techniques in hardware language for design optimization in terms of area, power consumption and frequency operation was conducted looking into the bibliography. The digital design flow was studied focusing on the Verilog hardware description language and the results of logic synthesis and layout, in order to implement the circuit. Reviews of two architectures have been made, using some of the encoding techniques that have been raised during the bibliographical study. These architectures have been implemented, verified on programmable platform, synthesized and mapped to standard cells in TSMC 180 nm process, which compared the area and total power consumption of results. Based on the results of logic synthesis, a 78% area reduction and 83% power consumption reduction were obtained on the implemented circuit with encoding techniques for optimization in comparison with the another circuit using a CORDIC unrolled architecture. The architecture with smaller area - 0.017 mm2 - was chosen for implementation in the mapped process. After the circuit fabrication and packaging, the chip was mounted on an evaluation board designed to evaluate the functionality. The test results were analyzed and compared with the simulation results, showing that the circuit works as expected. The output signals were compared between theoretical and experimental results, showing a maximum deviation of 0.00623%.
|
9 |
Projeto de circuito oscilador controlado numericamente implementado em CMOS com otimização de área. / Design of a circuit numerically controlled oscilator implemented in CMOS with area optimization.Paulo Roberto Bueno de Carvalho 25 October 2016 (has links)
Este trabalho consiste no projeto e implementação em CMOS de um circuito integrado digital para geração de sinais, denominado Oscilador Controlado Numericamente. O circuito será aplicado em um sistema de Espectroscopia por Bioimpedância Elétrica, utilizado como método para detecção precoce de câncer do colo do útero. Durante o trabalho, realizou-se o estudo dos requisitos do sistema de espectroscopia e as especificações dos tipos de sinais a serem gerados. Levantou-se, na bibliografia, algumas técnicas de codificação em linguagem de hardware para otimização do projeto nos quesitos área, potência dissipada e frequência máxima de funcionamento. Para implementar o circuito, também se pesquisou o fluxo de projeto de circuitos digitais, focando as etapas de codificação em linguagem de descrição de hardware Verilog e os resultados de síntese lógica e de layout. Foram avaliadas duas arquiteturas, empregando-se algumas das técnicas de codificação levantadas durante o estudo bibliográfico. Estas arquiteturas foram implementadas, verificadas em plataforma programável, sintetizadas e mapeadas em portas lógicas no processo TSMC 180 nm, onde foram comparados os resultados de área e dissipação de potência. Observou-se, nos resultados de síntese lógica, redução de área de 78% e redução de 83% na dissipação de potência total no circuito em que se aplicou uma das técnicas de otimização em comparação com o circuito implementado sem otimização, utilizando uma arquitetura CORDIC do tipo unrolled. A arquitetura com menor área utilizada - 0,017 mm2 - foi escolhida para fabricação em processo mapeado. Após fabricação e encapsulamento do circuito, o chip foi montado em uma placa de testes desenvolvida para avaliar os resultados qualitativos. Os resultados dos testes foram analisados e comparados aos obtidos em simulação, comprovando-se o funcionamento do circuito. Observou-se uma variação máxima de 0,00623% entre o valor da frequência do sinal de saída obtido nas simulações e o do circuito fabricado. / The aim of this work is the design of a digital integrated circuit for signal generation called Numerically Controlled Oscillator, designed in 180 nm CMOS technology. The application target is for Electrical Bioimpedance Spectroscopy system, and can be used as a method for early detection of cervical cancer. Throughout the work, the spectroscopy system requirements and specifications of the types of signals to be generated were studied. Furthermore, the research of some coding techniques in hardware language for design optimization in terms of area, power consumption and frequency operation was conducted looking into the bibliography. The digital design flow was studied focusing on the Verilog hardware description language and the results of logic synthesis and layout, in order to implement the circuit. Reviews of two architectures have been made, using some of the encoding techniques that have been raised during the bibliographical study. These architectures have been implemented, verified on programmable platform, synthesized and mapped to standard cells in TSMC 180 nm process, which compared the area and total power consumption of results. Based on the results of logic synthesis, a 78% area reduction and 83% power consumption reduction were obtained on the implemented circuit with encoding techniques for optimization in comparison with the another circuit using a CORDIC unrolled architecture. The architecture with smaller area - 0.017 mm2 - was chosen for implementation in the mapped process. After the circuit fabrication and packaging, the chip was mounted on an evaluation board designed to evaluate the functionality. The test results were analyzed and compared with the simulation results, showing that the circuit works as expected. The output signals were compared between theoretical and experimental results, showing a maximum deviation of 0.00623%.
|
Page generated in 0.1215 seconds