• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Konstrukční návrh testovacího zařízení pro automobilové zásuvky / Design of low volume inlet tester

Hotový, Michal January 2020 (has links)
The topic of this thesis is the design of a testing device for checking electrical car sockets according customers’ requirements. The electrical socket shall be tested by electrical, mechanical and camera tests. The diploma thesis is divided into two main parts, first is a part describing the basic elements in the construction of electric vehicles, and describing types of electric sockets in electric vehicles, and second, a practical part describing the design of a testing device.
2

Intégration des véhicules électriques dans le réseau électrique résidentiel : impact sur le déséquilibre et stratégies V2G innovantes / Electric vehicles interaction with the power grid : impact on the voltage and current unbalance and innovative V2G strategies

Fernandez Orjuela, Julian Alberto 28 May 2014 (has links)
Ces travaux de recherche constituent une contribution à l'étude des interactions entre le réseau électrique et le véhicule électrique (VE) en mode de recharge (Vehicle-to-Grid V2G). La recharge des VEs engendrant des surconsommations variant entre deux et plusieurs dizaines de kilowatts, occasionne des perturbations sur la qualité de l'énergie du réseau auquel ils sont connectés ; la gestion de l'énergie délivrée au VE est donc une priorité pour les différents acteurs industriels qui ont établi les infrastructures de recharge. Dans cette thèse nous proposons d'étudier l'impact des nombreux VEs en mode de recharge sur le déséquilibre en courant et en tension du réseau de distribution basse tension ainsi que sur les stratégies de recharge à mettre en œuvre pour améliorer la qualité de l'énergie, et notamment minimiser les taux de déséquilibre. Nous commençons par définir le besoin de réduire le déséquilibre en courant et en tension dans le réseau résidentiel de basse tension. Ensuite, nous étudions l'impact du taux d'insertion des VEs sur ces déséquilibres en estimant la sensibilité des paramètres statistiques les décrivant. Enfin, nous proposons des stratégies de gestion de la recharge et de la décharge cherchant à minimiser les déséquilibres occasionnés tout en respectant les contraintes de confort, c'est-à-dire de la recharge du VE avant le départ et les limites structurelles du système. / The study of the Vehicle to Grid (V2G) interactions is the main contribution of this research work. To charge an electric vehicle (EV) battery the overloading in low voltage (LV) residential networks is expected to be between 2 kW and maximum 10kW. To avoid power quality deterioration a battery recharge management is a priority for the charging infrastructure business. Our work has been, first, to study the impact of a significant number of EVs in recharge mode on the voltage and current unbalances in a LV residential electric network scenario and second to develop charging strategies to minimize those unbalances.First, we defined why it is important for the LV residential network to minimize the unbalances both in current and in voltage. Then, we studied the impact of different market penetration rates of the EV on the unbalances by estimating the sensibility of the statistical parameters describing them. Finally we developed several charging/discharging strategies in order to minimize the current unbalance by using optimization algorithms in the continuous and discrete domains. Several constraints were formulated in order to preserve power limits and an enough state of charge for the mobility.
3

Conception d'un convertisseur de puissance pour véhicules électriques multi-sources / Designing a power converter for electric vehicles multi-source

Boucherit, Ahmed 16 December 2011 (has links)
L’utilisation des plusieurs sources d’énergies de caractéristiques différentes, à bord du véhicule électrique VE) nécessite l’adoption de convertisseurs statiques. Ces derniers peuvent avoir la fonction de conditionneur ’énergie des différentes sources et/ou commander les machines électriques du véhicule.Généralement les VE disposent d’un bus continu « de quelques centaines de volts » dont la stabilité est assurée par un groupe de convertisseurs élévateurs de tension (du fait que les sources ont généralement un niveau de tension faible ; quelques dizaines de volts). Lors des démarrages/arrêts très fréquents du VE en mode urbain, les sources pourraient alimenter directement le moteur de traction sans avoir recours aux convertisseurs élévateurs de tension. Afin d’exploiter cette fonctionnalité, nous proposons d’explorer une deuxième architecture de convertisseur basée sur l’adoption d’un niveau de tension variable du bus continu. Dans cette approche, la tension minimale de ce dernier est fixée en fonction des niveaux de tensions disponibles du côté des sources et de la vitesse requise (niveau des f.é.m du moteur de traction). Ainsi, le rapport variable d’élévation de la tension est minimal à faible vitesse du véhicule en mode urbain et il est maximal à grande vitesse, en modes route et autoroute. Ceci apportera une amélioration du rendement énergétique de l’ensemble sources-moteurs notamment en mode urbain. Par ailleurs, l’utilisation grand public de ces véhicules exige des contraintes maximales de disponibilité (continuité de service) des fonctions principales notamment l’alimentation embarquée. A travers le travail de cette thèse nous proposons une nouvelle topologie du convertisseur de puissance entre les sources (une Pile à combustibles associée à un pack de super-condensateurs) et les charges (moteur de traction et réseau de bord alimentant les auxiliaires du véhicule). Ce convertisseur adopte une tension variable du bus continu et une redondance de l’alimentation du moteur de traction. Après la présentation du convertisseur proposé et son positionnement par rapport à la littérature, une analyse du fonctionnement et la modélisation de sa partie DC-DC est détaillée notamment à travers des résultats de simulation de ses différents modes. A ce titre un programme de simulation fine (à l’échelle des impulsions de commande) du système entier a été développé. Dans un deuxième temps, la commande automatique et rapprochée des interrupteurs de puissance a été développée en se basant respectivement sur la méthode de contrôle par petits signaux et la commande hystérésis de courant, triangulaire-rapport cyclique et triangulaire-sinus. Les résultats de simulation des fonctionnalités principales attendues mettent en évidence la faisabilité de l’architecture du convertisseur de puissance proposée. Enfin, une maquette expérimentale à échelle réduite a été développée dans le but de valider l’étude théorique. Les premiers tests expérimentaux de la partie DC-DC du convertisseur donnent des résultats satisfaisant et valident ainsi le processus de conception. Le travail futur sera la réalisation d’une maquette à échelle 1 dans laquelle la conception du refroidisseur sera intégrée en amont de la réalisation du plan de masse dudit convertisseur. Nous pensons que cela permettra une meilleure optimisation de l’espace à bord du véhicule et améliorera le rendement énergétique de la chaine de traction. / The use of many energy sources of different kind in a electrical vehicle (EV) needs the adoption of static converters. These can have the function of either conditioning energy or driving the electrical machines of the vehicle. EV’s generally have a DC bus of some hundred volts, whose stability is ensured by a set of boost converters, since the voltage level of the several sources is as low as about some tens of volts. During frequent start/stop phases of EV’s in urban mode, energy sources can feed the motors directly without using the converters. On the basis of this consideration this thesis proposes a novel converter topology adopting a variable DC voltage level. In this approach the lowest level of the DC bus is determined as a function of the voltages available from the sources and of the required speed (back fem of the traction motor). In this way the variable step-up voltage ratio is minimal at low speeds of the EV in urban mode and maximal at higher speeds in motorway modes. This would result in an energy efficiency improvement of the sources-motors system, especially in urban mode. On the other hand the use of this EV demands some constraints as for the service continuity of the main functions of the EV, particularly the energy supply.This thesis proposes a novel power converter topology between the sources (a Fuel Cell System associated with a pack of Super-capacitors) and the loads ( traction motor and auxiliary supply system). This converter adopts a variable DC bus voltage and a redundant supply of the traction motor. After presenting the proposed converter in the framework of the state of the art, the analysis and modelling of its DC/DC part is presented, especially with simulation results of the different modes of operation. With this regard a complete simulation program has been developed down to the scale of switching pulses. Afterwards the control of the power devices has been developed by using the small signal control and the hysteresis control, triangular duty cycle and triangular sine. The simulation results of the main modes show the feasibility of the proposed power converter architecture. Finally an experimental rig has been set up, at reduced scale, for assessing the theoretical analysis. The experimental results of the DC/DC part yield satisfactory results thus proving the effectiveness of the design. Future work will focus on setting up e real scale converter, where the cooling system design will be added before realizing the mass board of the converter. This should lead up to the optimization of the volume occupied in the EV and to the improvement of the energy efficiency of the traction chain.
4

Optimisation d'une chaîne de traction pour véhicule électrique / Optimization of electronics drives for electrical car (VELECTA project)

Sarrazin, Benoît 27 November 2012 (has links)
Les éléments constituant la chaîne de traction sont le plus souvent dissocies et indépendants entre eux (pack de batteries, convertisseur de traction et moteur). L'utilisation des convertisseurs en cascade en tant que convertisseurs de traction a été le cœur de ces travaux de thèse. Les performances énergétiques des convertisseurs en cascade et de l'onduleur de tension classique ont été comparées sur un cycle de conduite normalisé pour différentes configurations sur les convertisseurs de puissance (niveau de tension mis en jeu dans la chaîne de traction, variation du nombre d'onduleurs connectés en série pour les convertisseurs en cascade et variation du nombre de semi-conducteurs en parallèle pour réaliser la fonction des interrupteurs de puissance dans les convertisseurs). D'autres convertisseurs d'électronique de puissance sont nécessaires pour le bon fonctionnement d'un véhicule électrique. L'un de ces convertisseurs est le chargeur de batteries qui puise l'énergie du réseau électrique pour venir recharger les batteries du véhicule. Un autre est le système de monitoring des batteries qui permet d'assurer un équilibrage et un état de charge uniforme entre les différentes cellules qui composent le pack de batteries du véhicule. Dans une optique de mutualisation de fonction du convertisseur de puissance, les convertisseurs en cascade ont été étudiés pour assurer la fonction de chargeur et d'équilibreur lorsque la traction du véhicule n'est pas utilisée. / The elements that can be found in traction chain are usually separate and independent between them (battery pack, traction converter and motor). The use of cascaded inverter in order to drive the vehicle has been the heart of this thesis. The energy performance of cascaded inverter and classical voltage source inverter were compared on a standardized driving cycle for different power converters configurations (voltage level for the traction chain, variation of the number serial inverter for cascaded H-bridge and different number of semiconductors in parallel to do the function of the power switches in converters). Other power electronic converters are necessary for the electrical vehicle. One of these converters is the battery charger which tranfer energy from the network to the vehicle's batteries. Another is the battery monitoring system that ensures a balance and uniform state between the different cells which make up the battery pack of the vehicle. With an objective of increasing the function of the power converter, cascaded H-bridge have been designed to provide the function of charger and balance the battery cell when the traction chain of the vehicle is not used.

Page generated in 0.0877 seconds