• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 8
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 38
  • 11
  • 9
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

INTEGRATED GEOPHYSICAL INVESTIGATION OF KARST FEATURES – INNER BLUEGRASS REGION OF KENTUCKY

Frommel, Jamin C. 01 January 2012 (has links)
High-resolution electrical-resistivity, seismic-refraction, and seismic-reflection surveys were performed at three locations in the Inner Bluegrass Region of Kentucky along coincident survey lines in order to correlate results and determine which method is most effective at locating karst features in this area. The first two survey locations at Slack’s Cave and the Kentucky Horse Park were chosen in order to investigate known karst features. High and low electrical-resistivity anomalies were correlated to air- and water-filled karst voids, respectively. Seismic velocity anomalies, including parabolic time suppressions, amplitude terminations, and surface-wave backscatters, were also observed and correlated to these karst voids. These findings were applied to a third location along Berea Road in order to investigate undiscovered karst voids. Three seismic targets were selected based on backscatter anomaly locations and were aligned in a northwest trend following the general bedrock dip, joint orientations, and suspected conduit orientation. Overall, the seismic-reflection method provided the highest resolution and least ambiguous results; however, integration of multiple methods was determined to help decrease ambiguities in interpretation created by the inherent non-uniqueness found in the results of each method.
12

Permafrost Changes Along the Alaska Highway Corridor, Southern Yukon, from Ground Temperature Measurements and DC Electrical Resistivity Tomography

Maxime Arsène, Duguay 09 July 2013 (has links)
Permafrost temperatures were measured by the Geological Survey of Canada (GSC) in 1977-1981 at boreholes along a proposed pipeline route in the southern Yukon. Analysis of climate station records indicate that mean annual air temperatures in the region have since increased by 0.5-1.0˚C. Renewed interest in the pipeline and the need to develop adaptation strategies for existing highway infrastructure have meant that information on permafrost and geotechnical conditions must be updated. To accomplish this goal, a total of eight GSC boreholes ranging in depth from 5-9 m were located, unblocked of ice and instrumented with thermistor cables and data-loggers to permit renewed ground temperature monitoring. Manual temperature measurements were also taken at four other shallow boreholes. Electrical resistivity tomography (ERT) surveys were conducted at each site. MAGTs below 1 m at permafrost sites in the study area range from -0.2˚C to -1.5˚C with permafrost depths greater than 25 m. The permafrost at the study sites can be classified as sporadic discontinuous and extensive discontinuous. Ground temperatures indicate that permafrost can persist under warmer climatic conditions as long as it remains protected by its ecosystem properties. Thermal monitoring for 2011-2012 shows an average increase of 0.5-1.0˚C when compared to the original 1978-1981 ground temperatures. This slow rate of ground warming is mainly attributed to a combination of limited climate change, especially in the south of the study area, ground temperatures close to 0˚C, and the possible disturbance of sites from the removal of vegetation prior to the original measurements being made. ERT surveys conducted at most borehole sites show deeper thaw or taliks where the cleared cut-line used for geophysical work in the 1970s is crossed. These results indicate the impacts of climate change and environmental change in the study area over the past three decades. They appear to match the relatively slow rates of ground warming observed elsewhere in northern Canada where permafrost temperatures are close to 0˚C and where warming also requires changes in latent heat due to internal thaw. TTOP equilibrium modelling suggests that if climate change is responsible for the ground warming, most of the change can be attributed to the step-like MAAT increase that occurred between 1975-1976.
13

Geophysical characterization of Peace River landslide

Ogunsuyi, Oluwafemi 11 1900 (has links)
Landslides have occurred throughout the Holocene geologic epoch and they continue to occur in the Peace River Lowlands of Alberta and British Columbia. This study was conducted to provide an understanding of the processes and extents of one such landslide situated on a major slope at the Town of Peace River, Alberta by means of geophysical techniques with the aim of reducing the geohazard risk to lives and infrastructures. The geophysical characterization involved the acquisition, processing, and joint interpretation of seismic reflection, seismic refraction tomography, vertical seismic profile, and electrical resistivity tomography datasets, thereby providing important information about the subsurface geometry of the landslide, insights into the material properties of the unstable mass in contrast to that of the stable rock, and possible causes of the landslide. This contribution shows that putting considerable efforts into the acquisition and processing of geophysical datasets can yield valuable functional details. / Geophysics
14

Permafrost Changes Along the Alaska Highway Corridor, Southern Yukon, from Ground Temperature Measurements and DC Electrical Resistivity Tomography

Maxime Arsène, Duguay January 2013 (has links)
Permafrost temperatures were measured by the Geological Survey of Canada (GSC) in 1977-1981 at boreholes along a proposed pipeline route in the southern Yukon. Analysis of climate station records indicate that mean annual air temperatures in the region have since increased by 0.5-1.0˚C. Renewed interest in the pipeline and the need to develop adaptation strategies for existing highway infrastructure have meant that information on permafrost and geotechnical conditions must be updated. To accomplish this goal, a total of eight GSC boreholes ranging in depth from 5-9 m were located, unblocked of ice and instrumented with thermistor cables and data-loggers to permit renewed ground temperature monitoring. Manual temperature measurements were also taken at four other shallow boreholes. Electrical resistivity tomography (ERT) surveys were conducted at each site. MAGTs below 1 m at permafrost sites in the study area range from -0.2˚C to -1.5˚C with permafrost depths greater than 25 m. The permafrost at the study sites can be classified as sporadic discontinuous and extensive discontinuous. Ground temperatures indicate that permafrost can persist under warmer climatic conditions as long as it remains protected by its ecosystem properties. Thermal monitoring for 2011-2012 shows an average increase of 0.5-1.0˚C when compared to the original 1978-1981 ground temperatures. This slow rate of ground warming is mainly attributed to a combination of limited climate change, especially in the south of the study area, ground temperatures close to 0˚C, and the possible disturbance of sites from the removal of vegetation prior to the original measurements being made. ERT surveys conducted at most borehole sites show deeper thaw or taliks where the cleared cut-line used for geophysical work in the 1970s is crossed. These results indicate the impacts of climate change and environmental change in the study area over the past three decades. They appear to match the relatively slow rates of ground warming observed elsewhere in northern Canada where permafrost temperatures are close to 0˚C and where warming also requires changes in latent heat due to internal thaw. TTOP equilibrium modelling suggests that if climate change is responsible for the ground warming, most of the change can be attributed to the step-like MAAT increase that occurred between 1975-1976.
15

Clarifying detailed resistivity structures in seafloor hydrothermal fields by inversion of electric and electromagnetic data / 電気及び電磁データ逆解析法による海底熱水域での比抵抗構造の詳細解明

Ishizu, Keiichi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22423号 / 工博第4684号 / 新制||工||1731(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 小池 克明, 教授 三ケ田 均, 准教授 柏谷 公希, 教授 後藤 忠徳 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
16

Etude des flux à l'interface nappe-rivière. Apport de l'outil hydrogéophysique couplé à des mesures hydrodynamiques. / Water fluxes at the river/aquifer interface. Coupled study with hydrogeophysical and hydrodynamic tools.

Houzé, Clémence 27 September 2017 (has links)
Située à l'interface entre les eaux de surface et les eaux souterraines, la zone hyporhéique (ZH) est depuis maintenant plusieurs décennies considérée comme une zone cruciale pour la préservation des milieux aquatiques. Elle constitue souvent un indicateur fiable de la bonne qualité des eaux et une niche écologique primordiale pour de nombreuses espèces. Mais elle est aussi le lieu d'interaction entre deux masses d'eau de signature différente, ce qui conduit à la formation d'un milieu extrêmement fragile et siège d'un grand nombre de réactions biogéochimiques. L'objectif principal de cette thèse est de parvenir à une meilleure compréhension de la dynamique des échanges au sein de la zone hyporhéique. L'approche de cette problématique s'est faite sous un aspect innovant en couplant une démarche hydrogéologique "classique" à l'aide de mesures hydrodynamiques et géochimiques, et l'utilisation de la tomographie de résistivité électrique (ERT). Plusieurs campagnes de terrain ont été menées sur la rivière Essonne, choisie comme lieu d'expérimentation. Différents outils de prélèvement et/ou de mesure ont été mis en place et un grand nombre de mesures à différentes périodes de l'année ont été réalisées. Des expériences assez techniques et innovantes de suivi d'un abaissement et relèvement de barrage, ainsi qu'un traçage artificiel au sel ont pu être effectués grâce à la collaboration avec le syndicat chargé de la gestion et l'aménagement d'une partie du réseau hydrographique de l'Essonne (SIARCE). En parallèle avec cette étude expérimentale, une maquette numérique 3D de la zone d'étude a été réalisée à l'aide du logiciel HydroGeoSphere. Des tests de sensibilité ont permis d'identifier les paramètres hydrodynamiques les plus importants et de quantifier leur impact sur la formation et l'évolution de la zone hyporhéique. Finalement, les premières simulations des expériences menées sur le terrain ont permis de confronter l'approche expérimentale et l'approche théorique. / The Hyporheic Zone (HZ) is located at the interface between surface water and groundwater. For several decades it is considered as a hotspot for the development of a rich aquatic environment in rivers. Its system is often considered as a reliable indicator for water quality and a primary ecological niche for many species. From a hydrological point of view, it is also the place of interaction between two distinct water bodies with different geochemical signatures. This place of mixing forms a very fragile equilibrium where many biogeochemical reactions can occur. The objective of this thesis is to reach a better understanding of mixing and water fluxes in a dynamic context within the hyporheic zone. An innovative method was used by coupling a "classic" hydrogeological approach with hydrodynamic and geochemical measurements with Electrical Resistivity Tomography (ERT). Several field campaigns were done on the Essonne river as experimental site. A large number of measurements were done at various periods of the year and field equipment for water sampling and measurements were installed during these three years. Technical and innovative experiments were conducted such as a dam lowering and rising and an artificial salt tracer test in collaboration with the federation in charge of organization and management of the Essonne network. Finally, a 3D-model of the studied area was built with the HydroGeosphere software. The main hydrodynamic parameters have been tested in order to understand their impact and their variation in a static or dynamic environment on the hyporheic system and its development. In addition, field experiments were reproduced to compare the experimental and theoretical approach.
17

EVALUATION OF BEDROCK DEPTH AND SOIL INFILTRATION ALONG PENNYPACK CREEK USING ELECTRICAL RESISTIVITY TOMOGRAPHY AND MOISTURE LOGGERS

Milinic, Bojan, 0000-0001-5516-2291 January 2022 (has links)
Urbanized areas with increased amounts of impervious surfaces alter hydrologic systems by increasing stormwater runoff, decreasing infiltration, and reducing vegetation cover and evapotranspiration. Modeling hydrologic systems here is especially difficult due to the increased impervious land cover, which makes predicting processes such as urban streamflow and flooding challenging. By understanding the drivers of hydraulic processes, such as soil characteristics, bedrock depth, and land use, the quality and accuracy of models can be improved. The goal of this study was to use soil moisture loggers and electrical resistivity tomography (ERT) along the Pennypack Creek (Philadelphia, PA) to evaluate soil infiltration and bedrock depth in urban areas to ultimately access their impact on critical zone modeling. ERT was also used to validate or dispute recent seismic interpretations. Four study sites adjacent to Pennypack Creek were selected based on variations in underlying geology: Triassic basin sedimentary rock (Lukens), Paleozoic mafic gneiss (Meadow), Piedmont mica schist (Pine Road), and coastal plain weathered down to mica schist (Rhawn Street). Soil moisture sensors were installed at each site to a depth of up to 50 cm. ERT surveys were conducted at Pine Road and Rhawn Street sites. High infiltration variation at Pine Road and Meadow indicated macropores, which create preferential flow paths whereas low infiltration variation at Rhawn Street and Lukens indicated compaction associated with their land use (public parks). Comparing field capacity data to USDA soil type maps indicated the soil type was not a good predictor and in situ sampling was needed to estimate soil properties. ERT demonstrated bedrock was not shallow at the streambed as predicted by the seismic inversion and showed the need to corroborate depth to bedrock from seismic surveys beneath streams with resistivity inversions. Structure beneath the streambed was particularly noisy for the seismic surveys due to the flow of stream water. This study demonstrates that an accurate critical zone model, especially at urban sites, must rely on in situ investigation of hydrologic parameters based on land use, rather than assumptions of parameter values based on the underlying geology or soil type. / Geology
18

Evaluating Preferential Recharge in Blue Ridge Aquifer Systems Using Saline Tracers

Rugh, David F. 29 December 2006 (has links)
Multiple saline tracers were used to explore the role of geologic structure on groundwater recharge at the Fractured Rock Research Site in Floyd County, Virginia. Tracer migration was monitored through soil, saprolite, and fractured crystalline bedrock for a period of 3 months with chemical, physical, and geophysical techniques. Potassium chloride (KCl) and potassium bromide (KBr) tracers were applied at specific locations on the ground surface to directly test flow pathways in a shallow saprolite and deep fractured rock aquifer. Previous work at the Fractured Rock Research Site have identified an ancient thrust fault complex that is present in the otherwise competent metamorphic bedrock; fracturing along this fault plane has resulted in a highly transmissive aquifer that receives recharge along the vertically oriented portion of the fault zone. A shallow aquifer has been located above the thrust fault aquifer in a heterogeneous saprolite layer that rapidly transmits precipitation to a downgradient spring. Tracer monitoring was accomplished with differential electrical resistivity, chemical sampling, and physical monitoring of water levels and spring discharge. Tracer concentrations were monitored quantitatively with ion chromatography and qualitatively with differential resistivity surveys. KCl, applied at a concentration of 10,000 mg/L, traveled 160 meters downgradient through the thrust fault aquifer to a spring outlet in 24 days. KBr, applied at a concentration of 5,000 mg/L, traveled 90m downgradient through the saprolite aquifer in 19 days. KCl and KBr were present at the sampled springheads for 30 days and 33 days, respectively. Tracer breakthrough curves indicate diffuse flow through the saprolite aquifer and fracture flow through the crystalline thrust fault aquifer. Heterogeneities in the saprolite aquifer had a large effect on tracer transport, with breakthrough peaks varying several days over vertical distances of several meters. Monitoring saline tracer migration through soil, saprolite, and fractured rock provided data on groundwater recharge that would not have been available using other traditional hydrologic methods. Travel times and flowpaths observed during this study support preferential groundwater recharge controlled by geologic structure. Geologic structure, which is not currently considered an important factor in current models of Blue Ridge hydrogeology, should be evaluated on a local or regional scale for any water resources investigation, wellhead protection plan, or groundwater remediation project. / Master of Science
19

Natural and Controlled Source Magnetotelluric Data Processing and Modeling

Shan, Chunling January 2014 (has links)
In this thesis, four studies using different geophysical electromagnetic methods are presented. In the first study dealing with airborne measurements, the noise response due to the rotation of the aircraft and the aircraft itself as a metallic conductive body on the Earth's electromagnetic response in very low frequency and low frequency band was investigated. The magnetic fields are independent of the aircraft in the VLF band and part of the LF band. But at higher frequencies (above 100 kHz), the signals are more influenced by the aircraft. The aircraft also generates its own noise frequencies which are mixed with the radio transmitter signals. The second and third studies are applications of radio-, controlled source-magnetotellurics and electrical resistivity tomography methods at a quick-clay landslide site in southwest Sweden. The data are processed and modeled in 2D and 3D, and the models are compared with high-resolution seismic and geotechnical data. The obtained results were further validated and refined by performing synthetic tests in the second study. The third study shows that the 3D models provide larger and more continuous volume of the quick clay structure than traditional 2D models. Both studies have shown that integrated application of geophysical methods for landslides is ideal. Quick clays often overlie the coarse-grained layers showing an increase of resistivity values in the models. In the fourth study, a new audio magnetotelluric data acquisition technique is developed and is named moving magnetotellurics (MMT). In this new technique, the magnetic sensors are placed on the ground and only 15 to 20 minutes data are acquired for each station, which usually is enough to cover the frequency range 30-300 Hz. The new technique is more efficient and convenient than the traditional magnetotelluric method, and test measurements have shown that it is an applicable method in shallow depth studies.
20

Groundwater occurrence and quality in Bulawayo province, Zimbabwe

Nygren, Anton, Nordenskjöld, Edvard, Östblom, Erik January 2016 (has links)
This study focused on determining the groundwater flow paths in the crystalline subsurface rocks of the Bulawayo metropolitan, Zimbabwe, through analysing the discontinuities of the electrical properties of the ground, as well as in the magnetic field of the underlying rocks. Further, borehole water quality was analysed by measuring and mapping several chemical parameters, specifically TDS, salinity and the electrical conductivity. The electrical and magnetic anomalies were measured at two field sites within the Bulawayo province, the Harry Allen Golf Course and the Barbour Fields dumpsite, while 120 boreholes were sampled for water quality in a large part the province. Two magnetometers were used to measure the magnetic field and the time and location of the measurements, which resulted, after processing in SURFER, into the magnetic field map of these areas. This was used, in conjunction with the geologic map of the Bulawayo province, in order to determine useful locations for the electrical resistivity surveys. These included electrical resistivity tomography and vertical electrical sounding and were performed with an earth resistivity/induced polarization (IP) meter in order to measure the electrical resistivity of the ground. Inverse modelling was used in the RES2DINV software program to produce the topographic image of resistivity. The results for the borehole sampling showed that the maps for the three chemical parameters were very similar, with the western and northern parts of the mapped area displaying higher concentration values. The results of the electrical resistivity surveying showed probable areas of groundwater flow with its relationship to electric conductivity.

Page generated in 0.2017 seconds