• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 11
  • 10
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 192
  • 192
  • 132
  • 66
  • 58
  • 42
  • 39
  • 37
  • 35
  • 32
  • 29
  • 23
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

STATIC SHAPE CONTROL OF LAMINATED COMPOSITE PLATE SMART STRUCTURE USING PIEZOELECTRIC ACTUATORS �

Chee, Clinton Yat Kuan January 2000 (has links)
The application of static shape control was investigated in this thesis particularly for a composite plate configuration using piezoelectric actuators. A new electro-mechanically coupled mathematical model was developed for the analysis and is based on a third order displacement field coupled with a layerwise electric potential concept. This formulation, TODL, is then implemented into a finite element program. The mathematical model represents an improvement over existing formulations used to model intelligent structures using piezoelectric materials as actuators and sensors. The reason is TODL does not only account for the electro-mechanical coupling within the adaptive material, it also accounts for the full structural coupling in the entire structure due to the piezoelectric material being attached to the host structure. The other significant improvement of TODL is that it is applicable to structures which are relatively thick whereas existing models are based on thin beam / plate theories. Consequently, transverse shearing effects are automatically accounted for in TODL and unlike first order shear deformation theories, shear correction factors are not required. The second major section of this thesis uses the TODL formulation in static shape control. Shape control is defined here as the determination of shape control parameters, including actuation voltage and actuator orientation configuration, such that the structure that is activated using these parameters will conform as close as possible to the desired shape. Several shape control strategies and consequently algorithms were developed here. Initial investigations in shape control has revealed many interesting issues which have been used in later investigations to improve shape controllability and also led to the development of improved algorithms. For instance, the use of discrete actuator patches has led to greater shape controllability and the use of slopes and curvatures as additional control criteria have resulted in significant reduction in internal stresses. The significance of optimizing actuator orientation and its relation to piezoelectric anisotropy in improving shape controllability has also been presented. Thus the major facets of shape control has been brought together and the algorithms developed here represent a comprehensive strategy to perform static shape control.
122

Design, Analysis And Characterization Of Torsional MEMS Varactor

Venkatesh, C 05 1900 (has links)
Varactors form an important part of many communication circuits. They are utilized in oscillators, tunable matching networks, tunable filters and phase-shifters. This thesis deals with the design, analysis, characterization and applications of a novel MEMS varactor. Lower actuation voltage and higher dynamic range are the two important issues widely addressed in the study of MEMS varactors. The pull-in instability, due to which only 33% of the gap between plates could be covered smoothly, greatly reduces useful dynamic range of MEMS varactors. We propose a torsional MEMS varactor that exploits “displacement amplification” whereby pull-in is overcome and wide dynamic range is achieved. The torsion beam in the device undergoes torsion as well as bending. Behavior of the device has been analyzed through torque and force balance. Based on the torque balance and the force balance expressions, theoretical limits of torsion angle and bending for stable operation have been derived. Torsional MEMS varactors and its variants are fabricated through a commercial fabrication process (polyMUMPS) and extensive characterization has been carried out. Capacitance-voltage characteristics show a maximum dynamic range of 1:16 with parasitic capacitance subtracted out from the capacitance values. A bidirectional torsional varactor, in which the top AC plate moves not only towards bottom plate but also away from bottom plate, is also tested. The bottom AC plate is isolated from low resistivity substrate with a thin nitride layer. This gives rise to large parasitic capacitances at higher frequencies. So to avoid this, a varactor with both AC plates suspended in air is designed and fabricated. A dynamic range of 1:8 including parasitic capacitances has been achieved. Self-actuation is studied on fabricated structures and a torsional varactor that overcomes self-actuation has been proposed. Hysteresis behavior of the torsional varactor is analyzed for different AC signals across the varactor plates. Effects of residual stress on C-V characteristics are studied and advantages and disadvantages of residual stress on device performance are discussed. The torsional varactors have been cycled between Cmax and Cmin for 36 hours continuously without any failure. High-frequency characteristics of torsional varactors are analyzed through measurements on one-port and two port configurations. Measurements are done on polyMUMPS devices to study the capacitance variation with voltage, quality factor (Q) and capacitance variation with frequency. Effects of substrate are de-embedded from the device and characteristics of device are studied. An analog phase shifter based on torsional varactor proposed and analyzed through HFSS simulations. Very high tuning range can be achieved with a LC-VCO based on torsional varactors. A LC VCO with the torsional varactor as a capacitor in LC tank is designed. The torsional varactor and IC are fabricated separately and are integrated through wire bonding. Bond-wires are used as inductors.
123

Dimensioning Tools of MEA Actuator Systems, Including Modeling, Analysis and Technology Comparison

Torabzadeh-Tari, Mohsen January 2008 (has links)
Aircraft design is an example of complex engineering where dimensioning tools can be valuable for the designers and decision makers in the early stage of the development process. These tools can be in form of a database over key numbers for different components or technologies. One of the critical parts of an aircraft is the actuator system. Conventional hydraulic actuators are demanding regarding maintenance which implies high operation costs. Therefore in recent years the focus has been set on electro-hydrostatic and electro-mechanical actuators. The aim of this work is to build a platform which can make it easier for designers and decision makers to analyze, compare and optimize different technologies regarding the actuator system. For this reason a simplified quasi-static actuator model, including reactive power consumption has been developed. This model makes it possible to reduce the complexity of the actuator models to such extent that the resulting computional tool can be used for studies of the system performance during entire flight missions and/or for optimization. Power density, cost and weight of the actuator systems are some of the important key numbers for comparing purpose and as a platform for the dimensioning of the aircraft. The ambition is then to build up a database of different actuator solutions with the key technical parameters mentioned above, that can be used in modeling and dimensioning of an aircraft. In order to avoid time consuming finite element calculations when analyzing an electrical machine a reluctance network model can be used. The basic idea of the proposed network model is to divide the rotor and the stator into a grid of small reluctance elements and provide those that correspond to the permanent magnet and the air gap between the magnets with time varying reluctances. The suggested computationally approach constitute a fast way to evaluate permanent magnet electrical machines with the respect to their performance. A preferred electrical machine provided with balance teeth and concentrated windings showed good electromechanical and thermal behavior. A balance tooth is a tooth without winding between each adjacent phases that has a cooling effect on the nearest windings, resulting in less copper losses. The balance teeth increases the voltage-time area, leading to higher induced voltage and higher torque production. Another advantage of the chosen design is its redundancy and fault tolerance capabilities. The machine comprises two independent half machines that also offers a high level of redundancy with two separate power channels. / QC 20100914
124

The Development of a Monolithic Shape Memory Alloy Actuator

Toews, Leslie Marilyn January 2004 (has links)
Shape memory alloys (SMAs) provide exciting opportunities for miniature actuation systems. As SMA actuators are scaled down in size, cooling increases and bandwidth, improves. However, the inclusion of a bias element with which to cycle the SMA actuator becomes difficult at very small scales. One technique used to avoid the necessity of having to include a separate bias element is the use of local annealing to fabricate a monolithic device out of nickel titanium (NiTi). The actuator geometry is machined out of a single piece of non-annealed NiTi. After locally annealing a portion of the complete device, that section exhibits the shape memory effect while the remainder acts as structural support and provides the bias force required for cycling. This work proposes one such locally-annealed monolithic SMA actuator for future incorporation in a device that navigates the digestive tract. After detailing the derivation of lumped electro-mechanical models for the actuator, a description of the prototyping procedure, including fabrication and local annealing of the actuator, is provided. This thesis presents the experimental prototype actuator behaviour and compares it with simulations generated using the developed models.
125

The Development of a Monolithic Shape Memory Alloy Actuator

Toews, Leslie Marilyn January 2004 (has links)
Shape memory alloys (SMAs) provide exciting opportunities for miniature actuation systems. As SMA actuators are scaled down in size, cooling increases and bandwidth, improves. However, the inclusion of a bias element with which to cycle the SMA actuator becomes difficult at very small scales. One technique used to avoid the necessity of having to include a separate bias element is the use of local annealing to fabricate a monolithic device out of nickel titanium (NiTi). The actuator geometry is machined out of a single piece of non-annealed NiTi. After locally annealing a portion of the complete device, that section exhibits the shape memory effect while the remainder acts as structural support and provides the bias force required for cycling. This work proposes one such locally-annealed monolithic SMA actuator for future incorporation in a device that navigates the digestive tract. After detailing the derivation of lumped electro-mechanical models for the actuator, a description of the prototyping procedure, including fabrication and local annealing of the actuator, is provided. This thesis presents the experimental prototype actuator behaviour and compares it with simulations generated using the developed models.
126

A Fully-differential Bulk-micromachined Mems Accelerometer With Interdigitated Fingers

Aydin, Osman 01 March 2012 (has links) (PDF)
Accelerometer sensors fabricated with micromachining technologies started to take place of yesterday&rsquo / s bulky sensors in many application areas. The application areas include a wide range from consumer electronics and health systems to military and aerospace applications. Therefore, the performance requirements extend form 1 &mu / g&rsquo / s to 100 thousand g&rsquo / s. However, high performance strategic grade MEMS accelerometer sensors still do not exist in the literature. Smart designs utilizing the MEMS technology is necessary in order to acquire high performance specifications. This thesis reports a high performance accelerometer with a new process by making the use of bulk micromachining technology. The new process includes the utilization of Silicon-on-Insulator (SOI) wafer and its buried oxide (BOX) layer. The BOX layer helps to realize interdigitated finger structures, which commonly find place in surface micromachined CMOS-MEMS capacitive accelerometers. The multi-metal layered CMOS-MEMS devices inherently incorporate interdigitated finger structures. Interdigitated finger structures are highly sensitive to acceleration in comparison with comb-finger structures, which generally find usage in bulk-micromachined devices, due to absence of anti-gap. The designed sensors based on this fabrication process is sought to form a fully-differential signal interfaced sensor with incorporation of the advantages of high sensitive interdigitated finger electrodes and high aspect ratio SOI wafer&rsquo / s bulk single crystal silicon device. Under the light of the envisaged process, sensor designs were made, and verified using a computing environment, MATLAB, and a finite element analysis simulator, CoventorWARE. The verified two designs were fabricated, and all the tests, except the centrifuge test, were made at METU-MEMS Research Center. Among the fabricated sensors, the one designed for the high performance achieves a capacitance sensitivity of 178 fF with a rest capacitance of 8.1 pF by employing interdigitated finger electrodes, while its comb-finger implementation can only achieve a capacitance sensitivity of 75 fF with a rest capacitance of 10 pF.
127

Miniature laser scanning micro-endoscopes : multi-modality imaging system and biomedical applications

Wang, Youmin, 1986- 15 July 2013 (has links)
Cancer is a world menace. After years of endeavor seeking the end of it, people started to realize that no matter how powerful the therapy could be, detection at early stage is always a cheaper, easier and more successful solution compared with curative methods for cancer developed onto its advanced stage. However, relatively few early-detection approaches have proven sufficiently effective and practical for mass use as a point-of-care tool. An early-cancer screening tool integrating the desired features of sensitive, informative, portable, and cost-effective is in need for the doctors. The progress in optical imaging and Micro-electro-mechanical system (MEMS) technology offers a promise for an innovative cancer screening alternative that is non-invasive, radiation-free, portable and potentially cost-effective. This dissertation investigates handheld instrumentation as multi-modalities of miniature imaging probes with various designs of MEMS devices, to obtain real-time images of epithelial tissue optical and physiological properties, combining the quantitative advantages of spectral analysis with the qualitative benefits of imaging to distinguish early cancer. This dissertation in sequence presents the handheld instruments in the fashions of Laser-scanning confocal microscopy (LSCM), optical diffuse reflectance imaging, nonlinear optical imaging modalities with their subsequent image-guided managements in oral cancer, skin cancer detection, circulating tumor cell (CTC) imaging, and imaging guided surgeries. One of the main challenges facing miniaturization lies in the mechanism of beam deflection across the sample. This dissertation introduces two generations of MEMS devices desgined, fabricated and incorporated in the imaging probes. A two-axis vertical comb driven silicon micromirror was used in the development of a handheld LSCM for oral cancer detection. Though obtaining numerous advantages, this first generation silicon MEMS micromirror suffers from small aperture size and high voltage requirement for actuation, which result in low collection efficiency in fluorescence imaging and medial safety concerns, respectively. Therefore a stainless steel scanner compatible with electrical discharge machining (EDM) process was fabricated with simplified process, low-voltage magnetic actuation and large fluorescence collection efficiency, with its capability demonstrated in the incorporation and embodiment of a handheld hyperspectral nonlinear imaging probe. Besides, software and controlling innovations for handheld imaging modalities are presented. A feedback controlling system for MEMS scanning status monitoring was developed for stabilized imaging rendering. For the sake of further improved imaging stability in handheld imaging and to enable on-site mosaic for large field viewing, a handheld mosaic system was developed and presented. / text
128

FABRICATION OF MAGNETIC TWO-DIMENSIONAL AND THREE-DIMENSIONAL MICROSTRUCTURES FOR MICROFLUIDICS AND MICROROBOTICS APPLICATIONS

Li, Hui 01 January 2014 (has links)
Micro-electro-mechanical systems (MEMS) technology has had an increasing impact on industry and our society. A wide range of MEMS devices are used in every aspects of our life, from microaccelerators and microgyroscopes to microscale drug-delivery systems. The increasing complexity of microsystems demands diverse microfabrication methods and actuation strategies to realize. Currently, it is challenging for existing microfabrication methods—particularly 3D microfabrication methods—to integrate multiple materials into the same component. This is a particular challenge for some applications, such as microrobotics and microfluidics, where integration of magnetically-responsive materials would be beneficial, because it enables contact-free actuation. In addition, most existing microfabrication methods can only fabricate flat, layered geometries; the few that can fabricate real 3D microstructures are not cost efficient and cannot realize mass production. This dissertation explores two solutions to these microfabrication problems: first, a method for integrating magnetically responsive regions into microstructures using photolithography, and second, a method for creating three-dimensional freestanding microstructures using a modified micromolding technique. The first method is a facile method of producing inexpensive freestanding photopatternable polymer micromagnets composed NdFeB microparticles dispersed in SU-8 photoresist. The microfabrication process is capable of fabricating polymer micromagnets with 3 µm feature resolution and greater than 10:1 aspect ratio. This method was used to demonstrate the creation of freestanding microrobots with an encapsulated magnetic core. A magnetic control system was developed and the magnetic microrobots were moved along a desired path at an average speed of 1.7 mm/s in a fluid environment under the presence of external magnetic field. A microfabrication process using aligned mask micromolding and soft lithography was also developed for creating freestanding microstructures with true 3D geometry. Characterization of this method and resolution limits were demonstrated. The combination of these two microfabrication methods has great potential for integrating several material types into one microstructure for a variety of applications.
129

Process Capability in a Computer Integrated Manufacturing Cell

Austin, Andrew 01 May 2014 (has links)
With the rise of automation in traditional manufacturing processes, more companies are beginning to integrate computer integrated manufacturing (CIM) cells on their production floors. Through CIM cell integration, companies have the ability to reduce process time and increase production. One of the problems created with CIM cell automation is caused by the dependency the sequential steps have on one another. Dependency created by the previous step increases the probability that a process error could occur due to previous variation. One way to eliminate this dependency is through the use of an in-process measuring device such as a Renishaw spindle probe used in conjunction with a computer numerical control (CNC) milling machine. Western Kentucky University (WKU) utilizes a CIM cell in the Senator Mitch McConnell Advanced Manufacturing and Robotics laboratory. The laboratory is located in the Architectural and Manufacturing Sciences department and gives students the opportunity to learn how automated systems can be integrated. The CIM cell consists of three Mitsubishi six-axis robots, a Haas Mini-mill, a Haas GT-10 lathe, an AXYZ, Inc. CNC router table, 120 watt laser engraver, an Automated Storage and Retrieval System (ASRS), material handling conveyor, and vision station. The CIM cell functions throughout the curriculum as a means for applied learning and research. The researcher used this CIM cell in order to determine if an in-process measuring device, such as the Renishaw spindle probe, had the ability to affect process capability. The researcher conducted the study to see if an in-process measuring device can be integrated into the CIM cell located in the Senator Mitch McConnell Advanced Manufacturing and Robotics laboratory to eliminate compounding variation. The researcher discovered that through the use of a Renishaw 40-2 spindle probe used in conjunction with a CNC Haas Mini Mill, process capability has the potential to be improved in a CIM cell by accounting for compounding variation present in the process.
130

STATIC SHAPE CONTROL OF LAMINATED COMPOSITE PLATE SMART STRUCTURE USING PIEZOELECTRIC ACTUATORS �

Chee, Clinton Yat Kuan January 2000 (has links)
The application of static shape control was investigated in this thesis particularly for a composite plate configuration using piezoelectric actuators. A new electro-mechanically coupled mathematical model was developed for the analysis and is based on a third order displacement field coupled with a layerwise electric potential concept. This formulation, TODL, is then implemented into a finite element program. The mathematical model represents an improvement over existing formulations used to model intelligent structures using piezoelectric materials as actuators and sensors. The reason is TODL does not only account for the electro-mechanical coupling within the adaptive material, it also accounts for the full structural coupling in the entire structure due to the piezoelectric material being attached to the host structure. The other significant improvement of TODL is that it is applicable to structures which are relatively thick whereas existing models are based on thin beam / plate theories. Consequently, transverse shearing effects are automatically accounted for in TODL and unlike first order shear deformation theories, shear correction factors are not required. The second major section of this thesis uses the TODL formulation in static shape control. Shape control is defined here as the determination of shape control parameters, including actuation voltage and actuator orientation configuration, such that the structure that is activated using these parameters will conform as close as possible to the desired shape. Several shape control strategies and consequently algorithms were developed here. Initial investigations in shape control has revealed many interesting issues which have been used in later investigations to improve shape controllability and also led to the development of improved algorithms. For instance, the use of discrete actuator patches has led to greater shape controllability and the use of slopes and curvatures as additional control criteria have resulted in significant reduction in internal stresses. The significance of optimizing actuator orientation and its relation to piezoelectric anisotropy in improving shape controllability has also been presented. Thus the major facets of shape control has been brought together and the algorithms developed here represent a comprehensive strategy to perform static shape control.

Page generated in 0.0819 seconds