Spelling suggestions: "subject:"electromechanical"" "subject:"lectromechanical""
131 |
STATIC SHAPE CONTROL OF LAMINATED COMPOSITE PLATE SMART STRUCTURE USING PIEZOELECTRIC ACTUATORS �Chee, Clinton Yat Kuan January 2000 (has links)
The application of static shape control was investigated in this thesis particularly for a composite plate configuration using piezoelectric actuators. A new electro-mechanically coupled mathematical model was developed for the analysis and is based on a third order displacement field coupled with a layerwise electric potential concept. This formulation, TODL, is then implemented into a finite element program. The mathematical model represents an improvement over existing formulations used to model intelligent structures using piezoelectric materials as actuators and sensors. The reason is TODL does not only account for the electro-mechanical coupling within the adaptive material, it also accounts for the full structural coupling in the entire structure due to the piezoelectric material being attached to the host structure. The other significant improvement of TODL is that it is applicable to structures which are relatively thick whereas existing models are based on thin beam / plate theories. Consequently, transverse shearing effects are automatically accounted for in TODL and unlike first order shear deformation theories, shear correction factors are not required. The second major section of this thesis uses the TODL formulation in static shape control. Shape control is defined here as the determination of shape control parameters, including actuation voltage and actuator orientation configuration, such that the structure that is activated using these parameters will conform as close as possible to the desired shape. Several shape control strategies and consequently algorithms were developed here. Initial investigations in shape control has revealed many interesting issues which have been used in later investigations to improve shape controllability and also led to the development of improved algorithms. For instance, the use of discrete actuator patches has led to greater shape controllability and the use of slopes and curvatures as additional control criteria have resulted in significant reduction in internal stresses. The significance of optimizing actuator orientation and its relation to piezoelectric anisotropy in improving shape controllability has also been presented. Thus the major facets of shape control has been brought together and the algorithms developed here represent a comprehensive strategy to perform static shape control.
|
132 |
Pupil Tracking and Control of a Laser Based Power System for a Vision Restoring Retinal ImplantMailhot, Nathaniel 17 January 2019 (has links)
For elderly Canadians, the prevalence of vision impairment caused by degenerative
retinal pathologies, such as age-related macular degeneration and retinitis
pigmentosa, is at an occurrence rate of 14 percent, and on the rise. It has been
shown that visual function can be restored by electrically stimulating intact retinal
tissue with an array of micro-electrodes with suitable signals. Commercial retinal
implants carrying such a micro-electrode array achieve this, but to date must
receive power and data over copper wire cable passing through a permanent surgical
incision in the eye wall (sclera). This project is defined by a collaboration
with iBIONICS, who are developing retinal implants for treatment of such conditions.
iBIONICS has developed the Diamond Eye retinal implant, along with
several technology sub-systems to form a comprehensive and viable medical solution.
Notably, the Diamond Eye system can be powered wirelessly, with no need
for a permanent surgical incision.
The thesis work is focused on the formulation, simulation and hardware demonstration
of a powering system, mounted on glasses frame, for a retinal implant.
The system includes a Micro-Electro-Mechanical System (MEMS) mirror that directs
a laser beam to the implant through the pupil opening. The work presented
here is built on two main components: an iterative predictor-corrector algorithm
(Kalman filter) that estimates pupil coordinates from measurements provided by
an image-based eye tracking algorithm; and an misalignment compensation algorithm
that maps eye pupil coordinates into mirror coordinates, and compensates
for misalignment caused by rigid body motions of the glasses lens mirror and the
MEMS mirror with respect to the eye. Pupil tracker and misalignment compensation
control performance are illustrated through simulated scenarios. The project
also involves the development of a hardware prototype that is used to test algorithms
and related software.
|
133 |
Pronostic et algorithmes distribués de décision post-pronostic dans les systèmes à base de MEMS / Pronostics and distributed algorithms for post-pronostics decsion marketing in MEMS-basedSkima, Haithem 28 November 2016 (has links)
Dans de nombreux secteurs industriels, la miniaturisation des systèmes est devenue une nécessité afin de réduire l’espace occupé, le poids, les prix et la consommation d’énergie et de matière. Pour ce faire, les industriels utilisent les Micro-Electro-Mechanical Systems (MEMS). En revanche, les MEMS présentent plusieurs problèmes de fiabilité dus à leurs nombreux mécanismes de défaillance qui ont un impact sur la disponibilité des systèmes dans lesquels ils sont utilisés. Il est alors important de surveiller ces microsystèmes, d’anticiper leurs défaillances et de recommander les actions nécessaires afin d’allonger leur durée de vie. Une solution efficace pour ce faire est de développer le Prognostics & Health Management (PHM) pour les MEMS. Dans cet esprit, la thèse porte sur le pronostic et l’étude de l’état de santé de MEMS et la prise de décision post-pronostic dans les systèmes contenant ces microsystèmes. L’objectif est de rendre un système à base de MEMS distribué intelligent en intégrant des modules d’évaluation et de prédiction de l’état de santé du système ainsi que des capacités d’auto-adaptation dépendant des missions que le système doit accomplir. Dans un premier temps, une approche de pronostic hybride pour les MEMS basée sur le filtrage particulaire est proposée. Dans un second temps, et afin de mieux utiliser les résultats de cette approche, une stratégie de décision post-pronostic dans les systèmes distribués à base de MEMS est introduite. Un simulateur distribué a été développé pour simuler la décision post-pronostic. La performance de l’approche de pronostic et de la stratégie de décision post-pronostic est validée sur une application réelle, à savoir un convoyeur modulaire à base de MEMS distribués. Un cycle complet de PHM est ainsi développé : de l’acquisition des données à la prise de décision. / In many industrial sectors, system miniaturization becomes mandatory, allowing reducing occupied space, weight, price, power and material consumption. For this, manufacturers use Micro-Electro- Mechanical Sytems (MEMS). However, MEMS devices have several reliability issues due to their numerous failure mechanisms, which have an impact on the availability of systems where they are utilized. Therefore, it is important to monitor these micro-systems, to anticipate their failures and to perform appropriate actions to maximize their lifespan. One possible solution is to develop the Prognostics & Health Management (PHM) for MEMS. The thesis deals then with the prognostics and the study of MEMS health state and the post-prognostics decision making in systems containing these micro-systems. The aim is to make a MEMS-based system distributed and intelligent by integrating modules of health state assessment and prediction and capacities of self-adaptability dependent of the tasks performed by the system. Firstly, a hybrid prognostics approach for MEMS based on the particle filtering is proposed. Secondly, and to better use the results of this approach, a post-prognostics decision strategy in MEMS-based distributed systems is introduced. This strategy is based on a distributed decision algorithm. The performance of the prognostics approach and the post-prognostics strategy is validated on a real application consisting of a modular conveyor based on distributed MEMS. A complete PHM cycle is thus performed: from data acquisition to decision making.
|
134 |
Modélisation des relations structure / propriétés de transport de charge dans les matériaux pour l'électronique organique / Structure/charge transport relationships in molecular and polymeric materials for organic electronics through atomistic modelingGali, Sai Manoj 10 October 2017 (has links)
Les avancées technologiques et l'intégration massive de dispositifs électroniques nanométriques dans les objets de notre vie quotidienne ont généré une explosion des coûts de R&D, de conception et de production, ainsi que des inquiétudes sociétales quant à l'impact environnemental des déchets électroniques. En raison de procédés de production moins coûteux et à faible impact environnemental, de leur souplesse d’utilisation et de la possibilité de moduler leurs propriétés à l’infini, les molécules et polymères organiques constituent une classe de matériaux prometteuse pour la mise au point de nouveaux dispositifs électroniques. L’électronique organique couvre ainsi un vaste domaine d’applications, parmi lesquelles se trouvent les diodes électroluminescentes, les transistors à effet de champ ou les cellules photovoltaïques. Bien que la plupart de ces dispositifs soient déjà commercialisés, les processus gouvernant leur efficacité à l’échelle atomique sont loin d’être entièrement compris et maîtrisés. C’est en particulier le cas des processus de transport de charge, qui interviennent dans tous ces dispositifs.L'objectif de cette thèse est d’apporter une compréhension fondamentale des processus de transport de charge dans les semiconducteurs organiques, à partir d'approches théoriques combinant dynamique moléculaire, calculs quantiques et simulations Monte Carlo. Ce travail est développé suivant trois axes principaux:(I) Etude des relations liant l'organisation structurale et les propriétés de transport de cristaux moléculaires, et du rôle des fluctuations énergétiques dans des matériaux polymères amorphes. Des simulations Monte Carlo Cinétique (KMC) couplés au formalisme de Marcus-Levich-Jortner pour le calcul des taux de transfert ont été effectués afin de déterminer les mobilités des électrons et des trous au sein de dix structures cristallines de dérivés phtalocyanines. Dans une deuxième étude, une approche similaire a été employée afin de décrire les propriétés de transport de charge au sein d'un copolymère amorphe de fluorène-triphénylamine, ainsi que l'impact des fluctuations énergétiques sur ces dernières. La méthodologie développée permet d'obtenir, pour un faible coût calculatoire, une estimation semi-quantitative des mobilités des porteurs de charge dans ce type de système.(II) Etude de l'impact de contraintes mécaniques sur les propriétés de transport de matériaux organiques cristallins. La réponse électronique et les propriétés de transport de matériaux organiques soumis à une contrainte mécanique ont été étudiés à l'aide de simulations de dynamique moléculaire et de calculs DFT. Le rubrène cristallin et ses polymorphes, ainsi que les dérivés du BTBT, ont été considérés pour cette étude, qui révèle un couplage électromécanique inhabituel entre les différents axes cristallographiques. Les résultats démontrent en particulier que l'anisotropie structurale des monocristaux organiques conduit à une anisotropie du couplage électromécanique.(III) Etude du rôle du polyélectrolyte dans la conductivité des complexes conducteurs. Le polystyrène substitué par du bis(sulfonyl)imide est utilisé comme un contre-ion et un dopant dans les complexes conducteurs PEDOT-polyélectrolytes. En complément des analyses expérimentales, des simulations de dynamique moléculaire couplées à des calculs DFT ont été effectuées dans ces systèmes afin d'analyser l'impact de la conformation et de l'état de protonation du polyélectrolyte sur la conductivité du complexe formé avec le PEDOT.Les études décrites ci-dessus, réalisées sur différents types de matériaux en couplant différents types d'approches théoriques, ont permis d'apporter une compréhension fondamentale des propriétés de transport dans les semiconducteurs organiques. Elles mettent en particulier en évidence l'impact de l'organisation structurale, des interactions intermoléculaires et de l'application de contraintes mécaniques sur la mobilité des porteurs de charges dans ces matériaux. / With the advancement of technology, miniaturized electronic devices are progressively integrated into our everyday lives, generating concerns about cost, efficiency and environmental impact of electronic waste. Organic electronics offers a tangible solution paving the way for low-cost, flexible, transparent and environment friendly devices. However, improving the functionalities of organic (opto) electronic devices such as light emitting diodes and photovoltaics still poses technological challenges due to factors like low efficiencies, performance stability, flexibility etc. Although more and more organic materials are being developed to meet these challenges, one of the fundamental concerns still arises from the lack of established protocols that correlate the inherent properties of organic materials like the chemical structure, molecular conformation, supra-molecular arrangement to their resulting charge-transport characteristics.In this context, this thesis addresses the prediction of charge transport properties of organic semiconductors through theoretical and computational studies at the atomistic scale, developed along three main axes :(I) Structure-charge transport relationships of crystalline organic materials and the role of energetic fluctuations in amorphous polymeric organic semiconductors. Kinetic Monte-Carlo (KMC) studies employing the Marcus-Levich-Jortner rate formalism are performed on ten crystalline Group IV phthalocyanine derivatives and trends linking the crystalline arrangement to the anisotropic mobility of electrons and holes are obtained. Subsequently, KMC simulations based on the simpler Marcus formalism are performed on an amorphous semiconducting fluorene-triphenylamine (TFB) copolymer, to highlight the impact of energetic fluctuations on charge transport characteristics. A methodology is proposed to include these fluctuations towards providing a semi-quantitative estimate of charge-carrier mobilities at reduced computational cost.(II) Impact of a mechanical strain on the electronic and charge transport properties of crystalline organic materials. Crystalline rubrene and its polymorphs, as well as BTBT derivatives (well studied high mobility organic materials) are subjected to mechanical strain and their electronic response is analyzed. Employing tools like Molecular Dynamic (MD) simulations and plane wave DFT (PW-DFT) calculations, unusual electro-mechanical coupling between different crystallographic axes is demonstrated, highlighting the role of inherent anisotropy that is present in the organic single crystals which translates in an anisotropy of their electro-mechanical coupling.(III) Protonation-dependent conformation of polyelectrolyte and its role in governing the conductivity of polymeric conducting complexes. Polymeric bis(sulfonyl)imide substituted polystyrenes are currently employed as counter-ions and dopants for conducting poly(3,4-ethylenedioxythiophene) (PEDOT), resulting in PEDOT-polyelectrolyte conducting complexes. Employing MD simulations and DFT calculations, inherent characteristics of the polyelectrolyte like its acid-base behavior, protonation state and conformation, are analyzed in conjunction with available experimental data and the role of these characteristics in modulating the conductivity of resulting PEDOT-polyelectrolyte conducting complexes is highlighted.The above studies, performed on different organic electronic systems, emphasize the importance of inherent characteristics of organic materials in governing the charge transport behavior in these materials. By considering the inherent characteristics of organic electronic materials and systematically incorporating them into simulation models, accuracy of simulation predictions can be greatly improved, thereby serving not only as a tool to design new, stable and high performance organic materials but also for optimizing device performances.
|
135 |
Force equalization for active/active redundant actuation system involving servo-hydraulic and electro-mechanical technologies / Stratégie d'égalisation d'effort dans les systèmes d'actionnement actif-actif impliquant les technologies servo-hydraulique et électro-mécaniqueWang, Lijian 18 December 2012 (has links)
L'évolution vers les avions plus électriques engendre des efforts importants pour développer des actionneurs à source de puissance électrique pour les commandes de vol. Pour de telles applications critiques, il est peut être intéressant dans le futur d'associer à une même surface de contrôle un actionneur conventionnel à source de puissance hydraulique et un actionneur à source de puissance électrique mais ceci pose un problème important lorsque les deux actionneurs sont actifs simultanément: comme chacun essaye d'imposer sa position à l'autre,les deux actionneurs luttent l'un contre l'autre en développant des efforts néfastes qui ne sont pas utilisés par la charge. L'objet du présent travail est de proposer des stratégies d’égalisation d’effort pour un système d'actionnement impliquant ces deux types d''actionneurs opérant en mode actif-actif. La première étape est de concevoir leur commande en position et de la valider sur banc d'essai. Un banc d'essai virtuel fidèle à la réalité est ensuite réalisé dans l'environnement de simulation AMESim pour pouvoir évaluer facilement les différentes stratégies d'égalisation d'effort entre les deux actionneurs. Ces stratégies sont proposées et évaluées virtuellement en deux étapes, statique puis dynamique. Pour finir, une étude de robustesse est réalisée a posteriori pour évaluer la sensibilité des indicateurs de performance aux incertitudes sur les modèles de simulation et sur les points et les conditions de fonctionnement. / On the way to more electric aircraft (MEA), more and more power-by-wire (PBW) actuators are involved in the flight control system. For a hybrid redundant actuation system composed by the conventional hydraulically powered actuators and the PBW actuators, one major issue while they operate on active/active mode is the force fighting between channels. As the grave influence of force fighting on accelerating material fatigue and increasing power consumption,it must be addressed with attention. This thesis was aiming at proposing some effective force equalization control strategies for the hybrid actuation system involving one servo-hydraulic actuator (SHA) and one electro-mechanical actuator (EMA). For this objective, the position controllers for SHA and EMA were designed and validated as a first step. Then, a virtual test bench regarding to the realistic behaviors was built in the AMESim simulation environment to accelerate the controller design and enable the robustness study. Following this, 2 static force equalization control strategies were proposed and experimentally validated. The first strategy hat introduced integral force fighting signal to compensate the actuator position control was proved a good candidate solution. In the next part, 3 dynamic force equalization strategies were proposed and assessed on the virtual test bench. Their performance sensitivities to the parameter uncertainties were studied through Monte-Carlo method. The first strategy that introduced velocity and acceleration feed-forwards to force the SHA and EMA having similar pursuit dynamics showed a good force equalization performance as well as good segregation and good robustness. In the end, the work presented in thesis was concluded and perspective was given to the ongoing work.
|
136 |
Contribution to multi-physical studies of small synchronous-reluctance machine for automotive equipment / Contribution à l'étude multiphysique de la machine synchro-réluctante pour application automobileRasid, Mohd Azri Hizami 11 February 2016 (has links)
Dans une application d’équipement automobile, la conception optimale d’un actionneur nécessite la prise en compte simultané des différents phénomènes physiques ; tant qu’en termes de performances attendues ainsi que les contraintes à respectées. Ces physiques comprennent la performance électromagnétique / électromécanique, comportement thermique et le comportement vibro-acoustique. En prenant en compte le coût et la faisabilité en matières de fabrications, la machine synchro-réluctante (Syncrel) à rotor segmenté a été démontré intéressante pour une application avec des fortes contraintes d’encombrement et thermique. Cette étude a donc pour objective d’évaluer la capacité de la machine Syncrel dans ces différents physiques et démontre les interactions entre eux, qui peuvent affecter les performances de la machine en fonctionnement. Des modèles multi-physiques ont été développés et validés en utilisant une machine prototype conçu précédemment pour un actionneur d’embrayage électrique. En se servant des modèles validés, différents critères de performances des différentes topologies de rotor de la machine Syncrel ont été aussi comparés. A l’issue de l’étude, les modèles électromagnétiques, électromécaniques, thermiques et vibro-acoustiques valides sont à nos dispositions pour être utilisés dans la conception de machine Syncrel en future. La machine Syncrel avec rotor segmenté a été démontrée capable pour être utilisé dans l'application de l'embrayage électrique étudié en particulier. Suite à des évaluations de performance en physique différente, des pistes d'améliorations ont également été proposées. / In an on-board automotive environment, machines optimal design requires simultaneous consideration of numerous physical phenomena; both in terms of expected performance or in terms of constraints to be respected. The physics that can be affected includes the electromagnetic / electromechanical performance, thermal behavior and vibro-acoustic behavior. Among a large choice of machine, with the manufacturer cost and manufacturing concern taken en into account, the synchronous reluctance machine with segmented has been found to be particularly interesting for application with severe ambient temperature and encumbrance limitation. This study has therefore as objectives to evaluate the capacity of the synchronous reluctance machine in ail physics mentioned and eventually shows the interaction between these physics, thus performance alteration of the machine in operated in the automobile equipment environment. Multi-physics model were developed and confronted to experimental validations using a prototype machine that was developed for an electrical clutch. Using the validated model, different performance figures of synchronous reluctance machines with different rotor topologies were compared. Resulting from the study, valid electromagnetic, electromechanical, thermal and vibro-acoustic models are now available to be used as tools in future machine design. The synchronous reluctance with segmented rotor prototype machine has been shown to be capable to be used in the electrical clutch application studied in particular. Following performance evaluations in different physics, suggestions of improvements have also been proposed.
|
137 |
Development of New Structural Health Monitoring TechniquesFekrmandi, Hadi 16 March 2015 (has links)
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations.
A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time.
Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.
|
138 |
Acoustic Manipulation and Alignment of Particles for Applications in Separation, Micro-Templating, and Device FabricationMORADI, KAMRAN 17 March 2015 (has links)
This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations.
Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves.
Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm.
|
139 |
Development of New Structural Health Monitoring TechniquesFekrmandi, Hadi 16 March 2015 (has links)
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations.
A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time.
Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.
|
140 |
New Generator Control Algorithms for Smart-Bladed Wind Turbines to Improve Power Capture in Below Rated ConditionsAquino, Bryce B 07 November 2014 (has links)
With wind turbines growing in size, operation and maintenance has become a more important area of research with the goal of making wind energy more profitable. Wind turbine blades are subjected to intense fluctuating loads that can cause significant damage over time. The need for advanced methods of alleviating blade loads to extend the lifespan of wind turbines has become more important as worldwide initiatives have called for a push in renewable energy. An area of research whose goal is to reduce the fatigue damage is smart rotor control. Smart bladed wind turbines have the ability to sense aerodynamic loads and compute an actuator response to manipulate the aerodynamics of the wind turbine. The wind turbine model for this research is equipped with two different smart rotor devices. Independent pitch actuators for each blade and trailing edge flaps (TEFs) on the outer 70 to 90% of the blade span are used to modify aerodynamic loads. Individual Pitch Control (IPC) and Individual Flap Control (IFC) are designed to control these devices and are implemented on the NREL 5 MW wind turbine.
The consequences of smart rotor control lie in the wind turbine’s power capture in below rated conditions. Manipulating aerodynamic loads on the blades cause the rotor to decelerate, which effectively decreases the rotor speed and power output by 1.5%. Standard Region 2 generator torque control laws do not take into consideration variations in rotor dynamics which occur from the smart rotor controllers. Additionally, this research explores new generator torque control algorithms that optimize power capture in below rated conditions.
FAST, an aeroelastic code for the simulation of wind turbines, is utilized to test the capability and efficacy of the controllers. Simulation results for the smart rotor controllers prove that they are successful in decreasing the standard deviation of blade loads by 26.3% in above rated conditions and 12.1% in below rated conditions. As expected, the average power capture decreases by 1.5%. The advanced generator torque controllers for Region 2 power capture have a maximum average power increase of 1.07% while still maintaining load reduction capabilities when coupled with smart rotor controllers. The results of this research show promise for optimizing wind turbine operation and increasing profitability.
|
Page generated in 0.0848 seconds