• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 116
  • 27
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 344
  • 110
  • 86
  • 66
  • 60
  • 59
  • 53
  • 49
  • 48
  • 45
  • 36
  • 35
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Développement de catalyseurs cathodiques nanométriques sélectifs à l'environnement organique pour leur utilisation dans une pile microfluidique / Development of selective cathode catalysts to organic environment for their use in a microfluidic fuel cell

Ma, Jiwei 19 September 2013 (has links)
Les piles à combustible sans membrane polymérique comme les piles à combustible microfluidique ont des perspectives très intéressantes pour des applications énergétiques à basse puissance. L'étude menée consistait donc à poursuivre le développement de catalyseurs cathodiques nanométriques pouvant être utilisés en tant que cathode dans une pile à combustible microfluidique directe. Au cours de ce travail de thèse, une modification du comportement catalytique du platine a été réalisée grâce à un effet de support, d'alliage avec un métal de transition 3d (titane), ou bien encore par coordination de la surface de nanoparticules de platine avec un élément chalcogène (sélénium). Les effets induits par ces modifications sur les propriétés électroniques du matériau catalytique, et leurs implications sur son activité catalytique ont été étudiés au même titre que sa stabilité et sa tolérance vis-à-vis de petites molécules organiques. Les études ont été menées dans le but de présenter un nouveau paradigme des relations structure-activité, structure-stabilité et structure-tolérance gouvernant le comportement catalytique d'une surface de platine. Les expériences ont par voie de conséquence été conduites de façon à pouvoir séparer les effets catalytiques induits par le support, de ceux induits par un effet d'alliage ou bien encore par coordination des atomes de surface avec un élément chalcogène. En conclusion, ces études ont démontrés l'effet de l'interaction du métal avec le support (oxyde ou matériau carboné présentant divers degrés de graphitisation) sur l'activité et la stabilité des catalyseurs. Un autre point important, qui a été développé dans ce travail de thèse, est la modif / Fuel cells without polymeric membrane such as the microfluidic fuel cells (MFFC) possess very interesting perspectives for low-power energy applications. The study aimed at pursuing the development of nanometric cathodic catalysts and to study their activity, stability and tolerance in a microfluidic system. In the present thesis, the activity, stability and tolerance of Pt-based nanoparticle electrocatalysts were investigated. The effect of the support materials and the influence of surface modification by a second element including 3d transition metal (titanium) and chalcogenide (selenium) were studied. The separation and reduction of the complexity of the interaction between nanoparticles-support and nanoparticles modification by a second element enables to achieve a clear relationship of the structure-activity-stability-tolerance of the supported fuel-cell electrocatalysts. The present experimental results from the effects of the support materials and of the modification of Pt by a second element led to improve activity, stability and tolerance. The developed approach and acquired knowledge about surface property correlation can be further generalized and used in the design of advanced selective electrocatalysts. Furthermore, the synthesized electrocatalysts were used as cathode in an organic microfluidic fuel cell.
252

Méthode pour l’analyse de l’activité de la réduction de l’oxygène de catalyseurs sans métaux nobles par microscopie électrochimique. / Method to Analyze the Oxygen Reduction Reaction Activity of Noble Metal-free Catalysts by Electrochemical Microscopy.

Henrotte, Olivier 15 November 2018 (has links)
La synthèse de catalyseurs sans métaux nobles est une voie prometteuse pour rendre accessible à l’échelle mondiale les piles à combustible. L’analyse électrochimique de ces matériaux n’est pas aisée que ce soit pour comparer les propriétés électro catalytiques ou pour comprendre le fonctionnement de ces catalyseurs. Ceci provient du fait que la communauté scientifique évalue les performances catalytiques à l’échelle du matériau, donc sur un très grand nombre d’objets dont la réponse est moyennée. Les travaux présentés dans ce mémoire ont mis en place une méthode d’analyse de l’activité électrocatalytique de matériaux sans métaux nobles pour la réduction de l’oxygène en milieu acide par microscopie électrochimique à balayage. Cette approche permet d’étudier aussi bien macroscopiquement que microscopiquement les catalyseurs et d’étudier simultanément plusieurs catalyseurs, ce qui rend plus fiable la comparaison des résultats. Le dispositif présenté dans ce travail a permis de comparer différents catalyseurs avec des compositions proches ainsi que d’étudier l’influence de différentes paramètres sur un catalyseur : le chargement, la surface, la masse déposée et la quantité de Nafion ajoutée. Il a aussi été montré qu’il était possible d’étudier la stabilité des catalyseurs via ce dispositif. Ces différents résultats suggèrent que la méthode mise en place est polyvalente et permettra de nombreuses autres études. / The decrease of fuel cells cost is necessary to provide a worldwide access to the technology. Synthesis of noble metal-free catalysts is a promising way to achieve this goal. The electrochemical analysis of these materials is however not easy either to compare the electrocatalytic properties or to understand the performances of these catalysts. The scientific community generally studies catalysts at a macroscale, where the recorded response is averaged on a very large number of catalytic objects. The works presented here shows the setup of a method to analyze the electrocatalytic activity of noble metal-free catalyst for the oxygen reduction reaction in acidic media by scanning electrochemical microscopy. This method brings several advantages such as the possibility to study and compare multiple catalysts on the same sample at a macro- or a microscale. The comparison of several catalysts with this setup is then. A catalyst has been studied under various conditions of: loading, surface area, weight of catalyst and quantity of additives such as Nafion. The investigation of the material stability is also illustrated. These results suggest large range of application of the technique and many possibilities in the future are now open to investigated noble metal-free electrocatalytic materials.
253

Bimetallic aerogels for electrocatalytic applications

Kühn, Laura 29 May 2017 (has links)
Polymer electrolyte fuel cells (PEFCs) have emerged as a promising renewable emission-free technology to solve the worldwide increasing demand for clean and efficient energy conversion. Despite large efforts in academia and automotive industry, the commercialization of PEFC vehicles still remains a great challenge. Critical issues are high material costs, insufficient catalytic activity as well as longterm durability. Especially due to the sluggish kinetics of the oxygen reduction reaction (ORR), high Pt loadings on the cathode are still necessary which leads to elevated costs. Alloys of Pt with other less precious metals (Co, Ni, Fe, Cu, etc.) show improved ORR activities compared to pure Pt catalysts. However, state-of-the-art carbon-supported catalysts suffer from severe Pt and carbon corrosion during the standard operation of PEFCs, affecting their reliability and long-term efficiency. Multimetallic aerogels constitute excellent candidates to overcome these issues. Due to their large open pores and high inner surface areas combined with electrical conductivity, they are ideal for applications in electrocatalysis. In addition, they can be employed without any catalyst support. Therefore, the fabrication of bimetallic Pt-M (M=Ni, Cu, Co, Fe) aerogels for applications in fuel cell catalysis was the focus of this thesis. Based on a previously published synthesis for Pt–Pd aerogels, a facile one-step procedure at ambient conditions in aqueous solution was developed. Bimetallic aerogels with nanochain diameters of as small as 4 nm and Brunauer-Emmett-Teller (BET) surface areas of up to 60 m2/g could be obtained. Extensive structure analysis of Pt–Ni and Pt–Cu aerogels by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (STEM-EDX) and electrochemical techniques showed that both metals were predominantly present in their metallic state and formed homogeneous alloys. However, metal (hydr)oxide byproducts were observed in aerogels with higher contents of non-precious metal (>25 %). Moreover, electronic and geometric structures were similar to those of carbon-supported Pt alloy catalysts. As a result, ORR activites were comparable, too. A threefold improvement in surface-specific activity over Pt/C catalysts was achieved. The mass-specific activites met or exceeded the U.S. Department of Energy (DOE) target for automotive PEFC applications. Furthermore, a direct correlation between non-precious metal content in the alloy and ORR activity was discovered. Aerogels with nonprecious metal contents >25% turned out to be susceptible to dealloying in acid leaching experiments, but there was no indication for the formation of extended surface structures like Pt-skeletons. A Pt3Ni aerogel was successfully employed as the cathode catalyst layer in a differential fuel cell (1 cm2), which is a crucial step towards technical application. This was the first time an unsupported metallic aerogel was implemented in a PEFC. Accelerated stress tests that are usually applied to investigate the support stability of fuel cell catalysts revealed the excellent stability of Pt3Ni alloyed aerogels. In summary, the Pt alloy aerogels prepared in the context of this work have proven to be highly active oxygen reduction catalysts with remarkable stability.
254

Stratégies bio-inspirées pour la réduction catalytique et la valorisation du dioxyde de carbone / Bio-inspired strategies for the catalytic reduction and valorization of carbon dioxide

Gotico, Philipp 20 September 2019 (has links)
La criticité du réchauffement climatique incite à chercher des solutions pour réduire les émissions de dioxyde de carbone (CO₂). Le développement de catalyseurs qui peuvent aider à capturer, activer, réduire et valoriser le CO₂ est au cœur de ce défi. Cette thèse a répondu à cet appel en développant des mimétismes moléculaires inspirés de la Nature, dans le cadre plus large de la photosynthèse artificielle. Au début il s'agissait de suivre le parcours d'un photon de lumière visible et de déterminer comment il peut réduire la molécule de CO₂. Ensuite afin de réaliser des catalyseurs plus efficaces, de nouvelles molécules ont été synthétisées en s’inspirant de l’enzyme CO déshydrogénase (CODH) qui présente des performances exceptionnelles pour la réduction du CO₂. Enfin, une autre propriété du CODH a conduit à une validation de principe pour la valorisation immédiate du CO photo-produit dans la synthèse des liaisons amides marqués, une caractéristique courante des médicaments. / The criticality of global warming urges for the advancement of science to reduce carbon dioxide (CO₂) emissions in the atmosphere. At the heart of this challenge is the development of sustainable catalysts that can help capture, activate, reduce, and eventually valorize CO₂. This PhD work tried to respond to this call by developing molecular mimics inspired by natural systems in the larger scheme of artificial photosynthesis. Firstly, it involved tracking the journey of a photon of visible light and how it is transformed to a reducing power able to reduce CO₂. Secondly, in search for more efficient and stable catalysts, new mimics were synthesized inspired by the exceptional performance of CO dehydrogenase enzymes (CODH) in reducing CO₂. Lastly, further understanding of CODH also led to a proof-of-concept that directly valorizes the photo-produced CO for the synthesis of isotopically-labelled amide bonds, a common motif in pharmaceutically-relevant drugs.
255

Development of Alternative Materials to Replace Precious Metals in Sustainable Catalytic Technologies

Jain, Deeksha January 2019 (has links)
No description available.
256

C-H Functionalization by High-valent Formally Copper(III) Complexes

Bower, Jamey Kevin 07 September 2022 (has links)
No description available.
257

Electrochemically Driven Functionalization of Alkyl Halides

Truesdell, Blaise L. 07 September 2022 (has links)
No description available.
258

Hybrid Catalytic Systems for the Sustainable Reduction of Carbon Dioxide to Value-Added Oxygenates

Biswas, Akash Neal January 2023 (has links)
Atmospheric carbon dioxide (CO₂) concentrations have increased rapidly in recent decades due to the burning of fossil fuels, deforestation, and other industrial practices. The excessive accumulation of CO₂ in the atmosphere leads to global warming, ocean acidification, and other environmental imbalances, which may ultimately have wider societal implications. One potential solution to closing the carbon cycle is utilizing CO₂, rather than fossil fuels, as the carbon source for fuels and chemicals production. This lowers atmospheric CO₂ levels while simultaneously providing an economic incentive for capturing and converting CO₂ into more valuable products. This dissertation includes studies on three hybrid catalytic reactor systems coupling electrochemistry, thermochemistry, and plasma chemistry for the conversion of CO₂ into value-added oxygenates, such as methanol and C3 oxygenates (propanal and 1-propanol). First, a tandem two-stage system is described where CO₂ is electrochemically reduced into syngas followed by the thermochemical methanol synthesis reaction. The work here specifically focuses on the electrochemical CO₂ reduction reaction to produce syngas with tunable H₂/CO ratios. Using a combination of electrochemical experiments, in-situ characterization, and density functional theory calculations, palladium-, gold-, and silver-modified transition metal carbides and nitrides were found to be promising catalysts for enhancing electrochemical activity while reducing the overall precious metal loading. Second, another tandem two-stage system is demonstrated where CO₂ is electrochemically reduced into ethylene and syngas followed by the thermochemical hydroformylation reaction to produce propanal and 1-propanol. The CO₂ electrolyzer was evaluated with Cu catalysts containing different oxidation states and with modifications to the gas diffusion layer hydrophobicity, while the hydroformylation reactor was tested over a Rh₁Co₃/MCM-41 catalyst. The tandem configuration achieved a C₃ oxygenate selectivity of ~18%, representing over a 4-fold improvement compared to direct electrochemical CO₂ conversion to 1-propanol in flow cells. Third, a hybrid plasma-catalytic system is investigated where CO₂ and ethane are directly converted into multi-carbon oxygenates in a one-step process under ambient conditions. Oxygenate selectivity was enhanced at lower plasma powers and higher CO₂ to C₂H₆ ratios, and the addition of a Rh₁Co₃/MCM-41 catalyst increased the oxygenate selectivity at early timescales. Plasma chemical kinetic modeling, isotopically-labeled CO₂ experiments, and in-situ spectroscopy were also used to probe the reaction pathways, revealing that alcohol formation occurred via the oxidation of ethane-derived activated species rather than a CO₂ hydrogenation pathway. It is critical to assess whether the proposed CO₂ conversion strategies consume more CO₂ than they emit. A comparative analysis of the energy costs and net CO₂ emissions is conducted for various reaction schemes, including four hybrid pathways (thermocatalytic-thermocatalytic, plasma-thermocatalytic, electrocatalytic-thermocatalytic, and electrocatalytic-electrocatalytic) for converting CO₂ into C₃ oxygenates. The hybrid processes can achieve a net reduction in CO₂ provided that low-carbon energy sources are used, however further catalyst improvements and engineering optimizations are necessary. Hybrid catalytic systems can provide an alternative approach to traditional processes, and these concepts can be extended to other chemical reactions and products, thereby opening new opportunities for innovative CO₂ utilization technologies.
259

Fundamental Aspects of Electrocatalysis at Metal and Metal Oxide Electrodes

Chen, Youjiang January 2011 (has links)
No description available.
260

SYNTHESIS AND ELECTROCATALYSIS OF METAL NANOMATERIALS

Tang, Yongan 19 June 2014 (has links)
No description available.

Page generated in 0.0425 seconds