Spelling suggestions: "subject:"electrochemical modeling"" "subject:"lectrochemical modeling""
1 |
3D thermal-electrochemical lithium-ion battery computational modelingGerver, Rachel Ellen 2009 August 1900 (has links)
The thesis presents a modeling framework for simulating three dimensional effects in lithium-ion batteries. This is particularly important for understanding the performance of large scale batteries used under high power conditions such as in hybrid electric vehicle applications. While 1D approximations may be sufficient for the smaller scale batteries used in cell phones and laptops, they are severely limited when scaled up to larger batteries, where significant 3D gradients can develop in concentration, current, temperature, and voltage. Understanding these 3D effects is critical for designing lithium-ion batteries for improved safety and long term durability, as well as for conducting effective design optimization studies. The model couples an electrochemical battery model with a thermal model to understand how thermal effects will influence electrochemical behavior and to determine temperature distributions throughout the battery. Several modeling example results are presented including thermal influences on current distribution, design optimization of current collector thickness and current collector tab placement, and investigation of lithium plating risk in three dimensions. / text
|
2 |
Nouvelles architectures de surfaces d’échanges de piles à combustible de type SOFC pour l’amélioration de l’efficacité électrochimique / New architectures of exchange surface of SOFC for the improvement of electrochemical efficiencyGeagea, Maya 26 April 2017 (has links)
Le présent travail souhaite explorer théoriquement et expérimentalement de quelle manière l’augmentation des surfaces d’échange par l’architecturation mésoscopique des interfaces électrode/électrolyte dans une SOFC à anode support pourrait améliorer ses performances. D’abord, une optimisation des caractéristiques microstructurales de l’anode a été effectuée par ajustement de la composition initiale de la barbotine, favorisation de la percolation du réseau de Ni par une microstructure « hiérarchique » et des mesures de perméabilités aux gaz identifiant le choix de l’anode. Ensuite, un modèle électrochimique a montré une augmentation des courants d’échange par rapport à la surface plane dans le cas d’un motif périodique pour une épaisseur d’électrolyte sensiblement plus petite que les dimensions du motif. Ce dernier doit présenter des singularités concaves et convexes de façon à confiner le matériau d’électrode au voisinage de l’interface, ainsi que des caractéristiques géométriques réduisant la surtension de concentration. De telles architectures ont été réalisées, par des techniques de mise en forme des céramiques, sur des anodes auto-supportées (YSZ + Ni) sur lesquelles une couche mince d’électrolyte (YSZ) a été déposée, puis l’ensemble co-fritté. Pour finaliser la cellule, une barrière de diffusion (CGO) et une cathode bicouche (LSCF48 + CGO / LSCF48) ont ensuite été déposées puis frittées. Les premiers résultats électriques et électrochimiques montrent une augmentation de la densité de courant de130 à 300 mA.cm-2 à une tension d’opération de 0,7 V, qui reste plus élevée que ce que prévoyait la modélisation. Les résultats sont discutés ici en termes de géométrie du motif et de son évolution au cours du frittage, ainsi que des surtensions d’activation et de concentration. / The present work aims to explore, theoretically and experimentally, how the increase of exchange surfaces via the mesoscopic scale corrugation of electrode / electrolyte interfaces in an anode-supported SOFC could improve its performance. First, an optimization of the microstructural characteristics of the anode was performed by adjusting the initial composition of the slurry, favoring the percolation of the network of Ni by a "hierarchical" microstructure and gas permeability measurements identifying the choice of the anode. Next, an electrochemical model showed an increase in the exchange currents with respect to the planar surface in the case of a periodic pattern for an electrolyte thickness substantially smaller than the dimensions of the pattern. The latter must have concave and convex singularities so as to confine the electrode material in the vicinity of the interface, as well as geometrical characteristics reducing the concentration overvoltage. Such architectures have been carried out by ceramic shaping techniques on self-supported anodes (YSZ + Ni) on which a thin layer of electrolyte (YSZ) has been deposited, and then the co-sintered along with the anode. To finalize the cell, a diffusion barrier (CGO) and a bi-layered cathode (LSCF48 + CGO / LSCF48) were then deposited and then sintered. The first electrical and electrochemical results show an increase in the current density from 130 to 300 mA.cm-2 at an operating voltage of 0.7V, which is still higher than what was anticipated by modeling, reaching more than the double of the value for flat interfaces. The results are discussed here in terms of geometry of the pattern and its evolution during sintering, as well as activation and concentration overvoltages.
|
3 |
Distribution of Electrodeposited Copper on Patterned Substrates in the Presence of Additives: Effects of Periodic Reverse Current and EtchingLindberg, Erik, Lindberg January 2018 (has links)
No description available.
|
4 |
Modeling the Role of Plating Additives in the Metallization of Semiconductor Interconnects: From Dual Damascene to Through Silicon ViasAdolf, James 01 June 2011 (has links)
No description available.
|
5 |
Additives Screening Techniques and Process Characterization for Electroplating of Semiconductor InterconnectsBoehme, Lindsay Erin 11 June 2014 (has links)
No description available.
|
6 |
Electrochemical Modeling, Supervision and Control of Lithium-Ion BatteriesCouto Mendonca, Luis Daniel 20 December 2018 (has links) (PDF)
This thesis develops an advanced battery monitoring and control system based on the electrochemical principles that govern lithium-ion battery dynamics. This work is motivated by the need of having safer and better energy storage systems for all kind of applications, from small scale portable electronics to large scale renewable energy storage. In this context, lithium-ion batteries have become the enabling technology for energy autonomy in appliances (e.g. mobile phone, electric vehicle) and energy self-consumption in households. However, batteries are oversized and pricey, might be unsafe, are slow to charge and may not equalize the lifetime of the application they are intended to power. This work tackles these different issues.This document first introduces the general context of the battery management problem, as well as the particular issues that arise when modeling, supervising and controlling the battery short-term and long-term operation. Different solutions coming from the literature are reviewed, and several standard tools borrowed from control theory are exposed. Then, starting by well-known contributions in electrochemical modeling, we proceed to develop reduced-order models for the battery operation including degradation mechanisms, that are highly descriptive of the real phenomena taking place. This modeling framework is the cornerstone of all the monitoring and control development that follows.Next, we derive a battery diagnosis system with a twofold objective. First, indicators for internal faults affecting the battery state-of-health are obtained. Secondly, detection and isolation of sensor faults is achieved. Both tasks rely on state observers designed from electrochemical models to perform state estimation and residual generation. Whereas the former solution resorts to system identification techniques for health monitoring, the latter solution exploits fault diagnosis for instrumentation assessment.We then develop a feedback battery charge strategy able to push in performance while accounting for constraints associated to battery degradation. The fast and safe charging capabilities of the proposed approach are ultimately validated through long-term cycling experiments. This approach outperforms widely used commercial charging strategies in terms of both charging speed and degradation.The main contribution of this thesis is the exploitation of first principles models to develop battery management strategies towards improving safety, charging time and lifetime of battery systems without jeopardizing performance. The obtained results show that system and control theory offer opportunities to improve battery operation, aside from the material sciences contributions to this field. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
7 |
On the Identification of Favorable Data Profile for Lithium-Ion Battery Aging Assessment with Consideration of Usage Patterns in Electric VehiclesHuang, Meng January 2019 (has links)
No description available.
|
8 |
Thermal-Electrochemical Modeling and State of Charge Estimation for Lithium Ion Batteries in Real-Time ApplicationsFarag, Mohammed January 2017 (has links)
In the past decade, automobile manufacturers have gone through the initial adoption phase of electric mobility.
The increasing momentum behind electric vehicles (EV) suggests that electrified storage systems will play an important role in electric mobility going forward. Lithium ion batteries have become one of the most common solutions for energy storage due to their light weight, high specific energy, low self-discharge rate, and non-memory effect. To fully benefit from a lithium-ion energy storage system and avoid its physical limitations, an accurate battery management system (BMS) is required.
One of the key issues for successful BMS implementation is the battery model.
A robust, accurate, and high fidelity battery model is required to mimic the battery dynamic behavior in a harsh environment.
This dissertation introduces a robust and accurate model-based approach for lithium-ion battery management system.
Many strategies for modeling the electrochemical processes in the battery have been proposed in the literature.
The proposed models are often highly complex, requiring long computational time, large memory allocations, and real-time control.
Thus, model-order reduction and minimization of the CPU run-time while maintaining the model accuracy are critical requirements for real-time implementation of lithium-ion electrochemical battery models.
In this dissertation, different modeling techniques are developed. The proposed models reduce the model complexity while maintaining the accuracy.
The thermal management of the lithium ion batteries is another important consideration for a successful BMS.
Operating the battery pack outside the recommended operating conditions could result in unsafe operating conditions with undesirable consequences.
In order to keep the battery within its safe operating range, the temperature of the cell core must be monitored and controlled.
The dissertation implements a real-time electrochemical, thermal model for large prismatic cells used in electric vehicles' energy storage systems.
The presented model accurately predicts the battery's core temperature and terminal voltage. / Thesis / Doctor of Philosophy (PhD)
|
9 |
Microstructural optimization of Solid Oxide Cells : a coupled stochastic geometrical and electrochemical modeling approach applied to LSCF-CGO electrode / Optimisation microstructurale des cellules à oxydes solides : approche numérique couplant modélisation géométrique et électrochimique appliquée à l'électrode LSCF-CGOMoussaoui, Hamza 29 April 2019 (has links)
Ce travail porte sur la compréhension de l’impact de la microstructure sur les performances des Cellules à Oxyde Solide (SOC), avec une illustration sur l’électrode à oxygène en LSCF-CGO. Une approche couplant de la modélisation géométrique et électrochimique a été adoptée pour cet effet. Le modèle des champs aléatoires plurigaussiens et un autre basé sur des empilements de sphères ont été développés et adaptés pour les microstructures des SOCs. Ces modèles 3D de géométrie stochastique ont été ensuite validés sur différentes électrodes reconstruites par nano-holotomographie aux rayons X au synchrotron ou par tomographie avec un microscope électronique à balayage couplé à une sonde ionique focalisée. Ensuite, des corrélations semi-analytiques ont été proposées et validées sur une large base de microstructures synthétiques. Ces relations permettent de relier les paramètres ‘primaires’ de l’électrode (la composition, la porosité et les diamètres des phases) aux paramètres qui pilotent les réactions électrochimiques (la densité de points triples, les surfaces spécifiques interphases) et sont particulièrement pertinents pour les équipes de mise-en-forme des électrodes qui ont plus de contrôle sur ce premier ensemble de paramètres. Concernant la partie portant sur l’électrochimie, des tests sur une cellule symétrique en LSCF-CGO ont permis de valider un modèle déjà développé au sein du laboratoire, et qui permet de simuler la réponse électrochimique d’une électrode à oxygène à partir des données thermodynamiques et de microstructure. Finalement, le couplage des deux modèles validés a permis d’étudier l’impact de la composition des électrodes, leur porosité ou encore taille des grains sur leurs performances. Ces résultats pourront guider les équipes de mise-en-forme des électrodes vers des électrodes plus optimisées. / This work aims at better understanding the impact of Solid Oxide Cells (SOC) microstructure on their performance, with an illustration on an LSCF-CGO electrode. A coupled 3D stochastic geometrical and electrochemical modeling approach has been adopted. In this frame, a plurigaussian random field model and an in-house sphere packing algorithm have been adapted to simulate the microstructure of SOCs. The geometrical models have been validated on different electrodes reconstructed by synchrotron X-ray nano-holotomography or focused ion-beam tomography. Afterwards, semi-analytical microstructural correlations have been proposed and validated on a large dataset of representative synthetic microstructures. These relationships allow establishing the link between the electrode ‘basic’ parameters (composition, porosity and grain size), to the ‘key’ electrochemical parameters (Triple Phase Boundary length density and Specific surface areas), and are particularly useful for cell manufacturers who can easily control the first set of parameters. Concerning the electrochemical part, a reference symmetrical cell made of LSCF-CGO has been tested in a three-electrode setup. This enabled the validation of an oxygen electrode model that links the electrode morphological parameters to its polarization resistance, taking into account the thermodynamic data. Finally, the coupling of the validated models has enabled the investigation of the impact of electrode composition, porosity and grain size on the cell electrochemical performance, and thus providing useful insights to cell manufacturers.
|
10 |
Modélisation électrochimique du comportement d’une cellule Li-ion pour application au véhicule électrique / Electrochemical modeling of lithium-ion cell behaviour for electric vehiclesFalconi, Andrea 05 October 2017 (has links)
Le développement futur des véhicules électriques est lié à l’amélioration des performances des batteries qu’ils contiennent. Parallèlement aux recherches sur les nouveaux matériaux ayant des performances supérieures en termes d'énergie, de puissance, de durabilité et de coût, il est nécessaire développer des outils de modélisation pour : (i) simuler l'intégration de la batterie dans la chaine de traction et (ii) pour le système de gestion de la batterie, afin d'améliorer la sécurité et la durabilité. Soit de façon directe (par exemple, la prévention de surcharge ou de l’emballement thermique) soit de façon indirecte (par exemple, les indicateurs de l’état de charge). Les modèles de batterie pourraient aussi être utilisés pour comprendre les phénomènes physiques et les réactions chimiques afin d'améliorer la conception des batteries en fonction des besoins de l’utilisateur et de réduire la durée des phases de test. Dans ce manuscrit, un des modèles les plus communs décrivant les électrodes poreuses des batteries au lithium-ion est revisité. De nombreuses variantes dans la littérature s’inspirent directement du travail mené par le professeur J. Newman et son équipe de chercheurs à l’UC Berkeley. Pourtant relativement peu d’études analysent en détail les capacités prédictives de ce modèle. Dans ce travail, pour étudier ce modèle, toutes les grandeurs physiques sont définies sous une forme adimensionnelle, comme on l'utilise couramment dans la mécanique des fluides : les paramètres qui agissent de manière identique ou opposée sont regroupés et le nombre total de paramètres du modèle est considérablement réduit. Cette étude contient une description critique de la littérature incluant le référencement des paramètres du modèle développé par le groupe de Newman et les techniques utilisées pour les mesurer, ainsi que l’écriture du modèle dans un format adimensionnel pour réduire le nombre de paramètres. Une partie expérimentale décrit les modifications de protocoles mis en œuvre pour améliorer la reproductibilité des essais. Les études effectuées sur le modèle concernent d’une part l’identification des états de lithiation dans la cellule avec un attention particulière sur la précision obtenue, et enfin une prospection numérique pour examiner l’influence de chaque paramètre sur les réponses de la batterie en décharge galvanostatique puis en mode impulsion et relaxation. / The future development of electric vehicles is mostly dependent of improvements in battery performances. In support of the actual research of new materials having higher performances in terms of energy, power, durability and cost, it is necessary to develop modeling tools. The models are helpful to simulate integration of the battery in the powertrain and crucial for the battery management system, to improve either direct (e.g. preventing overcharges and thermal runaway) and indirect (e.g. state of charge indicators) safety. However, the battery models could be used to understand its physical phenomena and chemical reactions to improve the battery design according with vehicles requirements and reduce the testing phases. One of the most common model describing the porous electrodes of lithium-ion batteries is revisited. Many variants available in the literature are inspired by the works of prof. J Newman and his research group from UC Berkeley. Yet, relatively few works, to the best of our knowledge, analyze in detail its predictive capability. In the present work, to investigate this model, all the physical quantities are set in a dimensionless form, as commonly used in fluid mechanics: the parameters that act in the same or the opposite ways are regrouped and the total number of simulation parameter is greatly reduced. In a second phase, the influence of the parameter is discussed, and interpreted with the support of the limit cases. The analysis of the discharge voltage and concentration gradients is based on galvanostatic and pulse/relaxation current profiles and compared with tested commercial LGC cells. The simulations are performed with the software Comsol® and the post-processing with Matlab®. Moreover, in this research, the parameters from the literatures are discussed to understand how accurate are the techniques used to parametrize and feed the inputs of the model. Then, our work shows that the electrode isotherms shapes have a significant influence on the accuracy of the evaluation of the states of charges in a complete cell. Finally, the protocols to characterizes the performance of commercial cells at different C-rates are improved to guarantee the reproducibility.
|
Page generated in 0.1238 seconds