• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 16
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 98
  • 98
  • 19
  • 19
  • 18
  • 14
  • 13
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Electrochemical evaluation of nanocarbons for biogenic analyte detection

Lyon, Jennifer Lee, 1980- 29 August 2008 (has links)
This dissertation explores the use of nanocarbons both as conductive supports for redox enzyme electrochemistry and as electrocatalytic components for the nonmediated detection of biogenic analytes. More specifically, the influence of nitrogen doping of these nanocarbons (referred to herein as nitrogen-doped carbon nanotubes, or N-CNTs) on their bioelectrocatalytic performance is studied through direct enzyme adsorption and exploitation of the N-CNTs' inherent reactivity toward H₂O₂ to create H₂O₂-based sensing strategies. Both nondoped CNTs and N-CNTs may be effectively incorporated into biogenic sensing assemblies, as demonstrated herein using a variety of electrochemical techniques. Chapter 1 gives a general overview of the scope of this research and describes previous studies conducted within our laboratories that demonstrate our CNTs' promise as biogenic electrode materials. Chapter 2 describes the chemical vapor deposition (CVD) method used to prepare both CNTs and N-CNTs and establishes their suitability for use in the detection schemes outlined in later chapters through long-term stability studies. Additionally, the redox activity of Fe nanoparticles entrapped in the CNTs as a result of this CVD growth process is examined using a host of electrochemical experiments. Importantly, the data presented in this chapter show that these Fe particles do not explain the observed electrocatalytic response of the CNTs. Chapter 3 explores the direct adsorption of horseradish peroxidase (HRP) at both nondoped and N-CNTs. Spectroscopic and electrochemical assays are used to compare the extent of HRP enzymatic activity upon immobilization at both types of CNTs. Both types of HRP/CNT composites are then utilized in a quantitative H₂O₂ sensing strategy. Chapter 4 discusses the intrinsic reactivity of N-CNTs toward H₂O₂. Koutecky-Levich plots are used to demonstrate differences in H₂O₂ consumption mechanisms between NCNTs and traditional peroxidases. By replacing HRP with N-CNTs in an amperometric glucose detection scheme, the versatility of N-CNTs as a peroxidase substitute for biogenic analyte detection is demonstrated. Chapter 5 outlines future directions for this research, including possible strategies for improving electron transfer between HRP and both types of CNTs. This chapter also presents a newly developed, mediated oxidase-substrate electrochemical detection method that can easily be modified to incorporate CNTs.
32

Electrochemical evaluation of nanocarbons for biogenic analyte detection

Lyon, Jennifer Lee, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
33

Microfabricated iridium arrays : failure mechanisms, investigation of the Hg-Ir interface and their use in Cu or Hg determination /

Nolan, Melissa A. January 1999 (has links)
Thesis (Ph.D.)--Tufts University, 1999. / Adviser: Samuel P. Kaunaves. Submitted to the Dept. of Chemistry. Includes bibliographical references (leaves 190). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
34

Electrochemical sensors for the detection of tricresyl phosphate and determination of acid content in engine oils

Epur, Rigved, Simonian, Aleksandr L., January 2009 (has links)
Thesis--Auburn University, 2009. / Abstract. Vita. Includes bibliographical references (p. 105-116).
35

Graphene supported antimony nanoparticles on carbon electrodes for stripping analysis of environmental samples

Silwana, Bongiwe January 2015 (has links)
>Magister Scientiae - MSc / Platinum Group Metals (PGMs), particularly palladium (Pd), platinum (Pt) and rhodium (Rh) have been identified as pollutants in the environment due to their increased use in catalytic converters and mining in South Africa (as well as worldwide). Joining the continuous efforts to alleviate this dilemma, a new electrochemical sensor based on a nanoparticle film transducer has been developed to assess the level of these metals in the environment. The main goal of this study was to exploit the capabilities of nanostructured material for the development and application of an adsorptive stripping voltammetric method for reliable quantification of PGMs in environmental samples. In the study reported in this thesis, glassy carbon electrode (GCE) and screen-printed carbon electrode (SPCE) surfaces were modified with conducting films of nanostructured reduced graphene oxide-antimony nanoparticles (rGO-SbNPs) for application as electrochemical sensors. The rGO-SbNPs nanocomposite was prepared by Hummer`s synthesis of antimony nanoparticles in reaction medium containing reduced graphene oxide. Sensors were constructed by drop coating of the surfaces of the carbon electrodes with rGO-SbNPs films followed by air-drying. The nanocomposite material was characterised by: scanning and transmission electron miscroscopies; FTIR, UV-Vis and Ramanspectrosocopies; dc voltammetry; and electrochemical impedance spectroscopy. The real surface area of both electrodes were studied and estimated to be 1.66 × 10⁶ mol cm⁻² and 4.09 × 10³ mol cm⁻² for SPCE/rGO-SbNPs and GCE/rGO-SbNPs, respectively. The film thickness was also evaluated and estimated to be 0.36 cm and 1.69 × 10⁻⁶ cm for SPCE/rGO-SbNPs and GCE/rGO-SbNPs, respectively. Referring to these results, the SPCE/rGO-SbNPs sensor had a better sensitivity than the GCE/rGO-SbNPs sensor. The electroanalytical properties of the PGMs were first studied by cyclic voltammetry followed by indepth stripping voltammetric analysis. The development of the stripping voltammetry methodology involved the optimisation of experimental conditions such as selection of adequate supporting electrolyte, choice of pH and /or concentration of supporting electrolytes, deposition potential, deposition time, stirring conditions. The detection of Pd(II), Pt(II) and Rh(III) in environmental samples were performed SPCE/rGO-SbNPs and GCE/rGO-SbNPs at the optimised experimental conditions For the GCE/rGO-SbNPs sensor, the detection limit was found to be 0.45, 0.49 and 0.49 pg L⁻¹ (S/N = 3) for Pd(II), Pt(II) and Rh(III), respectively. For the SPCE/rGO-SbNPs sensor, the detection limit was found to be 0.42, 0.26 and 0.34 pg L⁻¹ (S/N = 3) for Pd(II), Pt(II) and Rh(III), respectively. The proposed adsorptive differential pulse cathodic stripping voltammetric (AdDPCSV) method was found to be sensitive, accurate, precise, fast and robust for the determination of PGMs in soil and dust samples. The simultaneous determination of PGMs was also investigated with promising results obtained. The AdDPCSV sensor performance was compared with that of inductive coupled plasma mass spectroscopy (ICP-MS) for the determination of PGM ions in soil and dust samples. It was found that though the metals could be determined by ICP-MS technique, it was limited from the standpoints of sensitivity, ease of operation and versatility compared to the AdDPCSV sensor. This study has show cased the successful construction and application of novel SPCE/rGO-SbNPs and GCE/rGO-SbNPs AdDPCSV sensors forthe determination of PGMs in environmental samples (specifically roadside dust and soil samples). The study provides a promising analytical tool for monitoring PGMs pollutants that are produced by automobiles and transported in the environment.
36

Application of catalysts and nanomaterials in the design of an electrochemical sensor for ochratoxin A

Flanagan, Shane Patrick 06 December 2010 (has links)
Ochratoxin A is the most potent chlorinated derivative of the ochratoxin group, consisting of a 5'-chlorinated dihydroisocoumarin moiety linked by an amide bond to l-phenylalanine. Produced as a secondary fungal metabolite by several species of Aspergillus and Penicillium, ochratoxin A has been shown to readily contaminate a large variety of commodities including cereals, groundnuts, dried fruit, spices and coffee. This has led to widespread contamination of ochratoxin in wine, beer, milk and meat products. As ochratoxin A is a potent nephrotoxin exhibiting teratogenic and carcinogenic properties, the development of a rapid screening platform for the cost effective control of ochratoxin A content in foodstuffs is therefore required. The evaluation of metallophthalocyanine and carbon nanotube electrode modification toward the development of a nanostructured biosensor capable of enhancing the electrochemical detection of ochratoxin A in complex media is presented. Cyclic voltammetry at a glassy carbon electrode allowed for the optimization of detection parameters including pH and type of supporting electrolyte. Britton-Robinson buffer was found to be the most suitable supporting electrolyte in terms of sensitivity and reproducibility obtaining a LOD of 0.28 μM as determined by differential pulse voltammetry. Subsequent analysis determined the dependence of OTA oxidation on pH in acidic media which proceeds with the transfer of two electrons to form a quinone/hydroquinone couple shown to adsorb to the electrode surface. Passivation of the electrode through adsorption of oxidation products was shown to severely limit the detection of OTA upon successive detection cycles. Comparison of various metallophthalocyanine modifiers showed an increase in sensitivity toward the detection of OTA at phthalocyanine complexes with metal based redox processes. However with the exception of NiPc and CoTCPc complexes, phthalocyanine modification was limited by the increase in deviation of current response and extent of fouling. NiPc modification showed an increase in sensitivity by two fold with fouling characteristics comparable to an unmodified electrode while low improvements in fouling was observed at CoTCPc modified electrodes with sensitivity in detection comparable to an unmodified electrode.Modification of the electrode with multi- and single walled carbon nanotubes produced a significant increase in sensitivity toward the detection of ochratoxin A. The electrocatalytic activity of nanotube modifiers was attributed to the increase in surface area and to the addition of oxygenated functional groups upon acid treatment as confirmed by Raman spectroscopy. Acid functionalization of the carbon nanotubes for a period of two hours produced the greatest increase in sensitivity obtaining a respective LOD of 0.09 μM and 0.03 μM for analysis of ochratoxin A at multi- and single walled carbon nanotube modified electrodes. Centrifugal purification of carbon nanotubes was deemed necessary to improve the electrocatalytic activity of the nanotube modifiers through the removal of carbonaceous impurities as visualized by atomic force microscopy. Furthermore, a crude lipase preparation, lipase A, was investigated as a potential biological recognition element for selective detection of ochratoxin A in complex media. Lipase A enabled the hydrolysis of ochratoxin A to the electroactive species ochratoxin α as confirmed by thin layer chromatography and voltammetric analysis. Additional isolation of a pure hydrolase from the lipase A preparation is required prior to utilization within a nanostructured biosensor platform capable of detecting ochratoxin A in complex media.
37

Desenvolvimento de sensores eletroquímicos à base de filmes com TCNX (tetracianoquinodimetano e tetracianoetileno) para a determinação de compostos fenólicos / Development of electrochemical sensors based on films containing TCNX (Tetracyanoquinodimethane and tetracyanoethylene) for phenolics compound determination

Luz, Rita de Cássia Silva 26 August 2018 (has links)
Orientador: Lauro Tatsuo Kubota / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T13:05:51Z (GMT). No. of bitstreams: 1 Luz_RitadeCassiaSilva_D.pdf: 824556 bytes, checksum: 44fa44dc39ee4ef1973fbd79f8c3e5ba (MD5) Previous issue date: 2007 / Resumo: Neste trabalho é descrito o desenvolvimento de sensores eletroquímicos à base de compostos com TCNX (tetracianoetileno e tetracianoquinodimetano) para a determinação de compostos fenólicos. Para este propósito foram preparados eletrodos de carbono vítreo modificados com tetracianoetileneto de lítio (LiTCNE) e bis(tetracianoquinodimetaneto) de bis(fenantrolina) de cobre (lI) [Cu(phen)2(TCNQ)2], ambos imobilizados em filmes de poli-l-lisina (PLL). Após esta etapa, o eletrodo modificado com LiTCNE/PLL foi testado para verificar a capacidade de eletrocatálise da reação de redução de p-nitrofenol enquanto que o eletrodo modificado com Cu(phen)2(TCNQ)2/PLL foi utilizado para a oxidação de catecol. As técnicas utilizadas para a realização deste trabalho foram a voltametria cíclica, voltametria de varredura linear, amperometria, voltametria de pulso diferencial e voltametria de onda quadrada, as quais foram utilizadas para estudar o comportamento dos eletrodos modificados, para a otimização dos parâmetros experimentais, obtenção dos parâmetros cinéticos e caracterização analítica dos sensores. Os hidrodinâmicos foram realizados com o objetivo de obter maiores informações sobre os processos de redução e oxidação de p-nitrofenol e catecol, respectivamente, sobre os eletrodos modificados. Através do gráfico de Koutech-Levich foi possível obter os valores para o coeficiente de difusão e constante de velocidade da reação (k) para os analitos em estudo. Os valores do coeficiente de difusão e de k, determinados para o p-nitrofenol, foram de 9,03 x 10 cm s e 1,65 x 10 mol L s, enquanto que para o catecol, os valores do coeficiente de difusão e de k, foram de 4,6 x 10 cm s e 1,3 x 10 mol L s, respectivamente. O aumento na velocidade de reação, tanto para o p-nitrofenol como para o catecol, foi atribuído à eficiente transferência eletrônica entre as espécies estudadas e os compostos eletroativos imobilizados nas superficies dos eletrodos de carbono vítreo. O eletrodo modificado com filme de LiTCNE/PLL apresentou uma ampla faixa de resposta linear, sensibilidade, limite de detecção e quantificação de 0,001 a 5 mmol L, 42,90 mA cm L mmol, 0,3 e 1,0 nmol L (n= 10), respectivamente, para o de p-nitrofenol, enquanto que o eletrodo modificado com Cu(phen)2(TCNQ)2/PLL apresentou uma faixa de resposta linear, sensibilidade, limite de detecção e quantificação de 0,005 a 5 mmol L (n=8), 16,10 mA cm, 1,5 e 5,0 nmol L, para o catecol. Após a aplicação destes sensores em amostras de interesse, estudos de adição e recuperação dos analitos foram realizados para avaliar a exatidão dos métodos e verificou-se que em ambos os casos foi possível uma percentagem de recuperação entre 98,87 e 104,5% para o p-nitrofenol e 99,1 e 100,1 % para o catecol / Abstract: In this work is describing the development of electrochemical sensors based on TCNX (tetracyanoquinodimethane and tetracyanoethylene) for phenolics compound determination. For this purpose glass carbon electrodes were modified with lithium tetracyanoethylenide (LiTCNE) and bis (tetracyanoquinodimethanide) of bis (phenantroline) of copper (II) [Cu(phen)2(TCNQ)2], both immobilized at films of poly-l-lysine (PLL). After this step, the modified electrode with LiTCNE/PLL was tested to verify the electrocatalysis capacity of the reduction of p-nitrofenol and the electrode modified with Cu (phen)2(TCNQ)2/PLL for the catechol oxidation. The techniques used for the accomplishment of this work were the cyclic voltametry, linear sweep voltametry, amperometry, differential pulse voltametry, and square wave voltametry, which were used to study the behavior of the modified electrodes, for the experimental parameters optimization, for the attainment of the kinetic parameters and analytical characterization of the sensors. Hydrodynamic studies were carried out with the aim to get information on the reduction processes and oxidation of p-nitrofenol and catechol, respectively, on the modified electrodes. Through the Koutech-Levich plot it was possible to obtain the values for the diffusion coefficient (Do) and kinetic constant of the reaction (k) for the analyte in study. The values of the diffusion coefficient and k, determined for p-nitrofenol, were 9,03 x 10 cm s and 1,65 10 x mol L s, whereas for catechol, the values of Do and k were 4,6 x 10 cm s e 1,3 x 10 mol L s, respectively. The increase of the reaction rate for p-nitrofenol and catechol was attributed to the efficient electron transfer between the studied species and immobilized electroactives species on superface the glassy carbon electrodes surface. The electrode modified with LiTCNE/PLL presented a wide linear response range, as well as sensitivity, detection and quantification limit of 0,001 up to 5 mmol L, 42,90 mA cm L mmol, 0,3 and 1,0 nmol L (n=10) for the p-nitrophenol, whereas the electrode modified with [Cu(phen)2(TCNQ)2], presented a linear range, sensitivity, detection and quantification limit of 0,005 a 5 mmol L (n=8), 16,10 mA cm, 1,5 e 5,0 nmol L, respectively, for catechol. After the application of these sensors in samples of interest, studies of addition and recovery of the analytes were carried out to evaluate the error of the methods and was verified that in both the cases a recovery percentages between 98,8 and 104,5% for p-nitrofenol and, 99,1 e 100,1 % for catechol / Doutorado / Quimica Analitica / Doutora em Ciências
38

Evaluation of low-cost hydrogen sulfide monitors for use in agriculture

Beswick-Honn, Jessica Marie 01 May 2017 (has links)
Toxic exposure to hydrogen sulfide (H2S) is a well-recognized hazard in agriculture, particularly in livestock operations that manage large amounts of manure. Numerous fatalities have been observed, often multiple fatalities in a single incident, due to toxic exposure to H2S from manure pits at concentrations higher than 500 ppm. Direct-reading instruments that alarm workers in the areas when H2S concentrations are high may prevent these fatalities. However, monitors that are commonly found in industries with robust safety programs are impractical for agricultural use as they are often prohibitively expensive and require regular maintenance and calibration that may be above the expertise level of agricultural workers. In more recent years, manufacturers marketed simpler models of direct-reading H2S monitors as “low-maintenance” or “maintenance-free” at a much lower cost than traditional monitors, which may cost $500 for basic models or more than $1000 for more complex models. The objective of this study was to test several models of low-cost, low-maintenance monitors in order to examine the features of each for comparison, as well as to test the performance of these monitors with no maintenance over time while under constant exposure to low levels of H2S. Two types of monitors were examined: qualitative monitors that were lowest-cost (around $100) and provided only alarm settings with no concentration displayed (Honeywell BW Clip and MSA Altair), and quantitative monitors that cost slightly more (around $200) but displayed concentration readings (Dräger Pac 3500 and Industrial Scientific T40 Rattler). All models were exposed to H2S for a test period of 4 months, at concentrations slightly higher than typical background concentrations to simulate expected monitor exposure for a year in a barn. The performance of qualitative (‘alarm-only’) monitors declined faster than over the course of the simulated barn year than the quantitative monitors, with both models of qualitative meters failing to alarm at the high setting before the test period was complete. The quantitative (‘concentration-display’) models showed fewer effects from long-term exposure over the duration of testing, but both models exhibited inaccuracies in the concentration readings when compared to calibration gas concentrations. The T40 Rattler provided consistently higher readings (+2.3 ppm) than the calibration gas concentration, while the Pac 3500 showed consistently lower readings (-3.4 ppm) than the calibration gas concentration. Serious acute health effects for H2S are not typically observed until exposure to concentrations above 500 ppm, so inaccuracies of this small magnitude are relatively insignificant. Though each of the test monitors is advertised to be maintenance-free for two years, this study found that failures occurred within one simulated year in a barn. Bump checks should be performed regularly to ensure the monitor reacts to the presence of H2S appropriately, even when the manufacturer’s literature may say otherwise. Most importantly, agricultural workers should always inspect and bump check these monitors prior to any potentially high-risk activity such as manure agitation or pumping to ensure that the monitor is still providing the protection needed from a potentially toxic release of H2S. This study tested each of these models within a clean chamber at room temperature to isolate the effects of long-term exposure to H2S. In an actual barn, these monitors may be exposed to variations in temperature and humidity, as well as other barn contaminants such as ammonia, dust, and chemicals. Each of these other exposures could also affect the performance of these monitors over time, and should be considered when storing and using these monitors. Furthermore, the potential interactions from other exposures is an opportunity for future study to better understand how these interactions may affect sensor performance in an agricultural environment.
39

Synthesis and characterization of bimetallic silver and platinum nanoparticles as electrochemical sensor for nevirapine, an anti-HIV drug

Oluoch, Okumu Fredrick January 2016 (has links)
Thesis (DTech (Chemistry))--Cape Peninsula University of Technology, 2016. / Bimetallic silver-platinum (Ag-Pt) nanoparticles (NPs) were synthesized via simultaneous reduction of varying mole fractions of metal precursors H2PtCl6.6H2O and AgNO3 by sodium citrate. Kinetics rates of were as follows; Ag NPs (0.079 s-1), Ag-Pt NPs 1:1 (0.082 s-1) and Pt NPs (0.006 s-1). The UV visible spectrum of Ag NPs exhibited a characteristic absorption band while Pt NPs and Ag-Pt bimetallic NPs exhibited no absorption peaks. Successful formation of both monometallic and bimetallic NPs was confirmed via transmission electron microscopy (TEM); selected area electron diffraction (SAED) and energy dispersive X-ray (EDX) analysis. TEM images depicted core-shell arrangement in the bimetallic (BM) NP ratios (1:1, 1:3 and 3:1) with an average particle size of 21 nm. The particle size trend where monometallic Ag NPs (60 nm) > Pt NPs (2.5 nm) while in the BM ratios Ag-Pt NPs 1:1 (25 nm) > Ag-Pt NPs 1:3 (20.7 nm). X-ray diffraction (XRD) patterns depicted crystallinity in all the synthesized NPs with confirmation of the face centred cubic structure formation. Transducers were fabricated by drop casting the nanoparticless on the glassy carbon electrode (GCE) and their electrochemical properties studied via cyclic voltammetry (CV). High diffusion coefficient (D) and surface coverage reported were Ag NPs (6.70 cm2 s-1, 54.49 mol cm-2 ) and Ag-Pt NPs 1:1 (0.62 cm2 s-11.85 mol cm-2). Electrochemical band gaps ranged from 1.45 to 1.70 eV while the Tauc’s model band gaps of nanoparticles were found in the range of 2.48 to 3.84 eV. These band gaps were found to be inversely proportional to particle size, which was attributed to the quantum confinement effect. Both optical and electrochemical band gap portrayed similar trend as well as an increase in the BM NP relative to monometallics. These nanoparticles band gaps are within semiconductor range for most materials. The electrochemical behaviour and surface characteristics were studied using 0.1 M PBS solution by scan rates variations for the diffusion coefficient determination of modified electrodes which ranged from 0.62 to 6.10 x 10-5 cm2 s-1. Laviron’s approach for parameters such as apparent charge transfer rate constant, ks, and charge transfer coefficient, α, for electron transfer between NPs and GCE were investigated using CV. The values of electron-transfer coefficients ranged from 0.1 to 0.7 while the charge transfer rate constant values ranged from 0.74 to 31.13 s-1.
40

Development of electrophoretic and biosensor methods applied to high intensity sweeteners

Bathinapatla, Ayyappa January 2015 (has links)
Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry, Durban University of Technology, 2015. / Materials which show sweetness are classified as nutritive sweeteners and non-nutritive sweeteners or artificial sweeteners. In the present work, capillary electrophoresis and electrochemical biosensors have been used to analyse and quantify the natural and chemical artificial sweeteners in different food samples. The experimental work was further supported by computational studies. Capillary electrophoresis (CE) is a technique in which charged molecules can efficiently be separated in a buffer solution within a capillary tube under the influence of a strong electric field. While in the case of a biosensor, the analyte interacts with the bioreceptor and the resulting output is measured by a specially designed transducer. Steviol glycosides (rebaudioside A and stevioside) are natural sweeteners, extracted from Stevia rebaudiana Bertoni belonging to the Asteraceae family. On the other hand, neotame and sucralose are chemical sweeteners manufactured from their structural analogues aspartame and sucrose, respectively. Accordingly in this work, two CE modes, namely electro kinetic chromatography–capillary electrophoresis (EKC–CE) and an indirect UV-Capillary zone electrophoresis were used for the evaluation of analytes studied. Steviol glycosides (rebaudioside A and stevioside) and neotame diastereomers (L,L and D,D) were analysed using EKC-CE in the presence of a chiral separating agent β-cyclodextrin (TM-β-CD). However, since sucralose demonstrates chromophore-like properties, an indirect UV-CZE method was therefore developed using simple amines (morpholine, piperidine, ethylamine and triethylamine) as the background electrolytes (BGE). The optimum separation conditions in EKC-CE were; UV detection at 210 nm, 50 mM phosphate buffer, 30 mM TM-β-CD, 20 kV applied voltage, 5 s hydrodynamic injection and pH of 8.0 and 5.5 (for steviol glycosides and neotame), respectively. On the other hand, optimum separation conditions for the indirect UV-CZE method were; UV detection at 230 nm, 0.2 M morpholine buffer at pH 12.0, +20 kV applied voltage, 30 0C cassette temperature and 6 s sample injection. Furthermore, a highly sensitive and novel electrochemical biosensor was developed using platinum and glassy carbon electrodes fabricated with different nanomaterials. Accordingly, cytochrome c/graphene oxide – gold NPs/multiwalled carbon nanotubes (MWCNTs) modified platinum electrodes were used for the analysis of rebaudioside A. Similarly, copper NPs capped with ammonium piperidine dithiocarbamate-MWCNTs-β-cyclodextrin and laccase/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) immobilized graphene oxide-p-aminothiophenol capped ZnO NPs nanocomposites modified with glassy carbon electrodes were developed for the determination of neotame and sucralose, respectively. The electrochemical behaviour of these sweeteners towards the developed sensors was tested by using cyclic voltammetry and differential pulse voltammetry under optimum experimental conditions (pH, scan rate, accumulation time, accumulation potential, pulse amplitude, voltage step and voltage step time). The prepared nanocomposites were characterized using thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. It was found that the developed electrochemical biosensors showed excellent catalytic activity towards the determination of natural and chemical sweeteners in commercially available food samples. Additionally, a comparative study between capillary electrophoresis and biosensor methods revealed that at optimum experimental conditions, typical detection limits ranging from 0.02017 to 0.07386 mM for steviol glycosides, 0.01857 to 0.08214 mM for neotame diastereomers and for sucralose 0.2804 mM were achieved. In contrast to CE methods, biosensor methods attained very low detection limits of 0.264 µM, 0.013 mM and 0.325 µM for rebaudioside A, neotame and sucralose, respectively. The unique properties of the nanomaterials in combination with electro chemical techniques provided best results with shorter analysis time in contrast to the conventional separation methods. Finally, the computational molecular modelling tools were used to better understand the results obtained from the separation mechanisms using capillary electrophoresis. The interaction of β-cyclodextrin with steviol glycosides/neotame diastereomers and sucralose with the amine buffers were studied and the computational results were in good agreement with the elution orders observed in capillary electrophoresis. Furthermore, docking studies were performed to predict the binding affinity interactions between the artificial sweeteners and biomolecules (cytochrome c and laccase) to understand a molecular level.

Page generated in 0.0756 seconds