• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 38
  • 35
  • 19
  • 15
  • 13
  • 8
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 475
  • 130
  • 83
  • 74
  • 67
  • 63
  • 57
  • 50
  • 49
  • 48
  • 47
  • 42
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Elektrochemická oxidace žlučových kyselin na elektrodách na bázi uhlíku. Možnosti využití v elektroanalýze. / Electrochemical oxidation of Bile Acids on Carbon Based Electrodes. The Possible Use in Electroanalysis.

Klouda, Jan January 2015 (has links)
The goal of this master's thesis was to examine the possibility of oxidation of seven selected bile acids and evaluate whether such processes are suitable for analytical purposes. The secondary goal was to describe the oxidation products of bile acid electrolysis. The experiments were carried out in a non-aqueous medium of acetonitrile and in a mixed medium of acetonitrile:water using linear sweep and cyclic voltammetry. The working electrode materials employed for voltammetric experiments were: highly oriented pyrolytic graphite, -cyclodextrin modified glassy carbon and boron doped diamond. Preparative electrolysis was carried out on a platinum electrode in the non-aqueous medium of acetonitrile. Experiments have shown that neither the highly oriented pyrolytic graphite electrode nor the -cyclodextrin modified glassy carbon electrode are suitable for analytical purposes under conditions used. The results achieved on the boron doped diamond electrode, on the other hand, have not yet been described in the literature. Primary bile acids cholic and chenodeoxycholic were oxidized at approximately 0.5 V lower potential in the mixed medium of acetonitrile:water than in the papers using carbon electrodes published until now. Products of oxidation on the platinum electrode were separated by TLC and...
272

Extracellular electron transfer-dependent metabolism of anaerobic ammonium oxidation (Anammox) bacteria

Shaw, Dario Rangel 08 1900 (has links)
Anaerobic ammonium oxidation (anammox) by anammox bacteria contributes significantly to the global nitrogen cycle and plays a major role in sustainable wastewater treatment. To date, autotrophic nitrogen removal by anammox bacteria is the most efficient and environmentally friendly process for the treatment of ammonium in wastewaters; its application can save up to 60% of the energy input, nearly 100% elimination of carbon demand and 80% decrease in excess sludge compared to conventional nitrification/denitrification process. In the anammox process, ammonium (NH4+) is directly oxidized to dinitrogen gas (N2) using intracellular electron acceptors such as nitrite (NO2–) or nitric oxide (NO). In the absence of NO2– or NO, anammox bacteria can couple formate oxidation to the reduction of metal oxides such as Fe(III) or Mn(IV). Their genomes contain homologs of Geobacter and Shewanella cytochromes involved in extracellular electron transfer (EET). However, it is still unknown whether anammox bacteria have EET capability and can couple the oxidation of NH4+ with transfer of electrons to extracellular electron acceptors. In this dissertation, I discovered by using complementary approaches that in the absence of NO2–, freshwater and marine anammox bacteria couple the oxidation of NH4+ with transfer of electrons to carbon-based insoluble extracellular electron acceptors such as graphene oxide (GO) or electrodes poised at a certain potential in microbial electrolysis cells (MECs). Metagenomics, fluorescence in-situ hybridization and electrochemical analyses coupled with MEC performance confirmed that anammox electrode biofilms were responsible for current generation through EET-dependent oxidation of NH4+. 15N-labelling experiments revealed the molecular mechanism of the EET-dependent anammox process. NH4+ was oxidized to N2 via hydroxylamine (NH2OH) as intermediate when electrode was used as the terminal electron acceptor. Comparative transcriptomics analysis supported isotope labelling experiments and revealed an alternative pathway for NH4+ oxidation coupled to EET when electrode was used as electron acceptor. The results presented in my dissertation provide the first experimental evidence that marine and freshwater anammox bacteria can couple NH4+ oxidation with EET, which is a significant breakthrough that is promising in the context of implementing EET-dependent anammox process for energy-efficient treatment of nitrogen using bioelectrochemical systems.
273

Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides

Jiang, Yihong 28 October 2015 (has links)
The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during SOM electrolysis. After electrolysis, upon cooling, silicon crystals precipitated out from the Si-Sn liquid alloy. The presence of high-purity silicon crystals in the liquid tin cathode was confirmed by SEM/EDS. The fluoride based flux was also optimized to improve YSZ membrane stability for long-term use.
274

Economic Analysis of Hydrogen Production by Photovoltaic Electrolysis / Ekonomisk analys av vätgasproduktion genom fotovoltaisk elektrolys

Gajardo, Luciano January 2014 (has links)
Awareness of the climate situation and greenhouse gas emissions from fossil fuels has focused attention on hydrogen as a renewable and sustainable energy resource. In this work an economic analysis of hydrogen production by a photovoltaic electrolysis system was conducted. Equations and solution methods from previous works [1, 2] have been used to compile the results. In order to run the electrolysis of water, electricity from the photovoltaic system was used. The photovoltaic electrolysis system for this analysis has been sized with data from previous works [3, 4] to satisfy the hydrogen consumption for a fuel cell bus. Annual savings, payback time and production costs of hydrogen and electricity were compared to analyses conducted by Paolo Laranci [1] and Lucia Bollini Braga [2]. CO2 emissions from steam reforming of natural gas and sugar cane bagasse ethanol have been calculated. In addition ethics for using natural gas and sugar cane bagasse for fuel production was studied to determine the advantages and disadvantages for respective hydrogen production processes. The estimated production cost for photovoltaic electricity calculated in this thesis was higher than the result achieved in Larancis [1] work. In addition the production cost was higher than for electricity from hydropower and photovoltaic-systems in Latin America [2] and also than for the electricity tariff in Brazil [1]. Payback time and annual savings calculated in this thesis was found to be higher than for Larancis photovoltaic system. To reduce the production cost solar cells with higher efficiency should be used, investments costs for the system reduced and governmental subsidies raised. The estimated production cost for photovoltaic electrolysis hydrogen calculated in this thesis was higher compared to Lucia Bollini Braga's. The production cost for hydrogen by steam reforming of natural gas and sugar cane bagasse ethanol was also an economically favorable alternative. For hydrogen produced by photovoltaic electrolysis to be an economically advantageous alternative the electrolysis operating hours should increase likewise the electrolyser efficiency. In addition the investment cost for the electrolyser should decrease. By using photovoltaic electrolysis to produce hydrogen fossil CO2-emissions are eliminated and abundant solar energy can be utilized. Brazil is a country that possesses great natural resources of sugar cane bagasse. Steam reforming of ethanol from sugar cane bagasse could be a future option for producing sustainable, economically favorable and ethically acceptable hydrogen in Brazil. / Medvetenheten om klimatsituationen och utsläppen av växthusgaser från fossila bränslen har riktat uppmärksamheten mot vätgas som är en förnybar och hållbar energiresurs. I detta arbete har en ekonomisk analys för produktion av vätgas genom fotovoltaisk elektrolys av vatten genomförts. Ekvationer och lösningsmetoder från tidigare arbeten [1, 2] har använts för att sammanställa resultat. För att driva elektrolysen av vatten används elektricitet från det fotovoltaiska systemet. Systemet för denna analys har dimensionerats med hjälp av data från tidigare arbeten [3, 4] för att satisfiera konsumtionen av vätgas för en bränslecellsbuss. Årliga besparingar, payback och produktionskostnader för vätgas och elektricitet har jämförts med analyser utförda av Paolo Laranci [1] och Lucia Bollini Braga [2]. Koldioxidutsläpp för ångreformering av naturgas och etanol från sockerrörs bagass har beräknats. Utöver detta har en etikstudie för användning av naturgas och etanol (ur sockerrörs bagass) vid bränsleproduktion gjorts för att avgöra fördelar och nackdelar med respektive system för vätgasproduktion. Den i detta arbete beräknade produktionskostnaden för elektricitet från det fotovoltaiska systemet var högre än resultatet som åstadkoms i Larancis [1] arbete. Vidare var den i detta arbete beräknade produktionskostnaden högre än för elektricitet från vattenkraft och fotovoltaisk energi i Latinamerika [2] samt elpriset i Brasilien[1]. Payback-tiden och de årliga besparingarna visade sig vara högre för det fotovoltaiska systemet beräknat i denna analys än för Larancis system. För att minska produktionskostnaderna bör solceller med högre verkningsgrad användas, investeringskostnader av fotovoltaiska system minskas och statliga subventioner för installationen ökas. Den i detta arbete beräknade produktionskostnaden för vätgas genom fotovoltaisk elektrolys var högre jämfört med Lucia Bollini Bragas system. Produktionskostnaden för vätgas genom ångreformering av naturgas och etanol (ur sockerrörs bagass) var likaså ett mer ekonomiskt gynnsamt alternativ än fotovoltaisk elektrolys. För att vätgas producerat genom fotovoltaiskt elektrolys ska vara ekonomiskt fördelaktigt bör elektrolysens drifttimmar ökas, elektrolysen verkningsgrad öka och investeringskostnader för elektrolysen minska. Genom att använda fotovoltaisk elektrolys för att framställa vätgas elimineras fossila CO2-utsläpp och solenergi som finns i stort överskott kan utnyttjas. Brasilien är ett land som besitter stora naturresurser i form av sockerrör. Ångreformering av etanol från sockerrörs bagass kan vara ett framtida alternativ för att framställa hållbar, ekonomiskt gynnsam och etiskt accepterad vätgas i Brasilien.
275

Hydrogen as energy backup for the Hexicon : A case study on Malta

Rebello de Andrade, Filipe January 2013 (has links)
The island of Malta is highly reliant on fossil fuels for its power (99%), and due to climate mitigation policies implemented by EU the Maltese government is required to have 10% of its power generation from renewables by 2020. To achieve these energy goals, the Maltese government has expressed interest in investing on a Hexicon platform to produce 9% of the Maltese energy demand. The Hexicon platform is a floating structure capable of carrying a wide range of renewable energy generators. The Hexicon platform proposed for Malta is meant to have a rated capacity of 54MW distributed by vertical and horizontal wind energy converters. Nevertheless, due to the irregular nature of wind the Hexicon platform would still use diesel generators on-board as backup power; this inherently defeats the purpose of the Maltese investment, and therefore a Hydrogen backup system was proposed and investigated for its technical and economic viability. A literature study was carried out on renewable hydrogen system in order to familiarise with the type of markets and the best way to apply the technology to the scenario at hand. Four markets were established, small-scale, transportation, stand-alone power systems, and large buffering systems; the large buffering system is the most appropriate for the study, and taking this type of system into account, the most appropriate hydrogen generation and utilisation system were then identified. It was established that the system is composed of three parts, electrolyser, storage tanks and fuel cells stacks. However, an additional water purification system is necessary; this is due to the fact that the Hexicon platform will be located offshore, and salt water is not appropriate for the electrolyser. A literature study was then performed to identify the most appropriate equipment for each stage of the process; it was established that a Reverse Osmosis (RO) system will be used to purify the water, an alkaline electrolyser will be used to generate the Hydrogen, the Hydrogen will then be stored in pressure vessels (at 30bar), thus also requiring compressors, and the recovery of energy will be performed by a proton exchange membrane (PEM) fuel cell (FC) stack. A study was carried out to establish the models to use for each equipment, and based on the hourly demand for Malta, as well as the hourly winds, a first estimate of the size of each equipment was established. The system model was developed in the HOMER software, which unfortunately did not model the desalination plant. The Hexicon (in the design considered in this study) is not able to provide Malta with 9% of the energy demand; this was mainly due to the low wind conditions. In addition to this, it was understood from the literature study that a hydrogen system backup system, i.e. a buffering system, would not be applicable to the scenario initially proposed in this thesis due to the low renewable energy penetration, and also due to the fact that the Hexicon would be connected to the grid, rendering such a system defunct. A micro-grid scenario was assumed and developed. This scenario tried to assess how low the demand would need to be in order to make a hydrogen project feasible. Different percentages were tried and the only one that met the constraints was one with 1.1% of the Maltese demand. The system would consist of a 3MW Fuel Cell, a 4.5MW electrolyser, and hydrogen storage for 10.5tonnes. The NPC of this system would be approx. 130 Million €, with an initial investment of approx. 71 Million €, LCOE of 0.257€.kWh-1, and a Hydrogen cost of approx. 20€.kg-1. While other economic indicators show viability, for example, a short payback time of 3.5 years based on the revenue from the excess electricity, the cost of hydrogen suggests that it is too expensive.
276

Extraction of Mn and Cr from slags by molten salt electrolysis

Tianming, Sun January 2012 (has links)
There are many kinds of elements, especially heavy metallic elements, presentin the industrial slags. These elements bring big environmental problems ifthey are directly used in land filling. And the recovery of these elements canalso have benefits for the resource conservation. This paper reports the use ofelectrochemical method to extract the metal elements from both industrial slagand pure oxide. The mixture of NaCl-KCl was used as the electrolyte for thisprocess. Some proposals are alsomentioned for the further work.
277

Implementation of water electrolysis in Växjö´s combined heat and power plant and the use of excess heat : A techno-economic analysis

von Hepperger, Florian January 2021 (has links)
Renewable energies are fluctuating and the bigger its share on the Swedish energy market, the more fluctuating are the prices. Therefore, CHP plant operators as VEAB in Växjö, are more and more struggling to be competitive. There is, hence, a need of alternative options for the use of produced electricity, rather than being dependent on such a volatile and unclear market. Hydrogen production through water electrolysis could therefore be an alternative to be decoupled from the electricity business and instead being part of a promising, future hydrogen economy. Since state-of-the-art electrolysers have efficiencies between 51% and 75%, it was assessed that some of the efficiency losses could be recuperated by implementing the excess heat in an existing District heating (DH) grid. Calculations of the base scenario electrolyser with a power input of 870 kW showed, that an increase of the overall temperatures of the returning mass flow of the DH grid from 0,05°C to 0,23°C should be achievable. The economic analysis showed, that for this size of hydrogen production unit, the minimum hydrogen selling price (MHSP) would be 6,64 €/kg, which is not competitive on today’s market. However, the sensitivity analysis showed, that by a decreased investment cost, lower electricity prices and especially by scaling up the base scenario, the MHSP could be lowered significantly. Assuming a reduction of investment costs of 20% and scaling up the electrolyser by 1000% to 8700 kW, the MHSP resulted in 1,9 €/kg, a competitive price on the market. This study revealed that hydrogen production could be part of the future business model of CHP plant operators and provides a guideline on the feasibility of such a project.
278

Electrochemical Reduction of Vitrified Nuclear Waste Simulants in Molten Salt / 溶融塩中における模擬ガラス固化体の電解還元

Katasho, Yumi 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第21192号 / エネ博第366号 / 新制||エネ||72(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 野平 俊之, 教授 萩原 理加, 教授 佐川 尚 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
279

Modellgestützte Wirtschaftlichkeitsbewertung von Betriebskonzepten für Elektrolyseure in einem Energiesystem mit hohen Anteilen erneuerbarer Energien

Michaelis, Julia 06 October 2018 (has links)
Um die internationalen Klimaschutzziele zu erreichen, ist es notwendig, Strom verstärkt aus erneuerbaren Energien zu gewinnen. Gleichzeitig bedarf es flexibler Verbraucher zum Ausgleich der schwankenden Stromeinspeisung. Da nicht alle Anwendungen vollständig auf die direkte Nutzung von Strom umgestellt werden können, werden weitere Energieträger als Speichermedium benötigt. Wasserstoff, der über die flexibel steuerbare Elektrolyse aus Strom und Wasser gewonnen werden kann, ist ein vielfältig nutzbarer Energieträger, z.B. für die chemische Industrie oder für Brennstoffzellenfahrzeuge. Heute ist der Einsatz des Elektrolyseurs noch nicht wirtschaftlich, da die Wasserstoffgestehungskosten über denen konkurrierender Verfahren liegen. Bei geänderten Rahmenbedingungen und fortschreitender Entwicklung der Elektrolysetechnologie kann sich dies jedoch ändern, weshalb sich die Frage stellt: Kann ein Elektrolyseur im deutschen Energiesystem mit hohen Anteilen erneuerbarer Energien zukünftig wirtschaftlich betrieben werden? Zur Beantwortung der Fragestellung wird zunächst auf Stromhandelsplätze und die aktuelle Marktsituation für flexible Technologien am Strommarkt eingegangen und Entwicklungen im Bereich der Wasserstoffproduktion und -nachfrage werden vorgestellt. Um zukünftige Strombörsenpreise für verschiedene Szenarien zu bestimmen, wird anschließend ein fundamentales Simulationsmodell erstellt. Zwei Handelsplätze, die für den Elektrolyseurbetrieb von Bedeutung sind, stehen im Fokus: der Spotmarkt für den kurzfristigen Stromhandel und der Regelleistungsmarkt für die Vermarktung flexibler Lasten. Für den Regelleistungsmarkt werden Preise anhand eines Opportunitätskostenansatzes bestimmt. Die simulierten Marktpreise werden als Eingangsdaten für ein Optimierungsmodell verwendet, das den Deckungsbeitrag für den Betrieb eines Elektrolyseurs unter Berücksichtigung technischer Restriktionen maximiert. Verschiedene Betriebskonzepte werden hierbei untersucht, die den direkten Absatz von Wasserstoff, dessen Rückverstromung oder auch die Regelleistungsvorhaltung berücksichtigen. Anhand der erzielten Erlöse und Kosten lassen sich die Konzepte bewerten und die Forschungsfrage beantworten. Anhand von drei aus der Literatur ausgewählten Szenarien werden Entwicklungspfade des Energiesystems sowie verschiedene Ausprägungen techno-ökonomischer Parameter des Elektrolyseurs bis zum Jahr 2050 festgelegt. Die Szenarien unterscheiden sich u.a. hinsichtlich des Ausbaus erneuerbarer Energien und der Energieträgerpreise. Es zeigt sich, dass ein wirtschaftlicher Betrieb, wenn überhaupt, erst langfristig, d.h. voraussichtlich nach dem Jahr 2030, möglich ist. Dafür muss die Investition in den Elektrolyseur deutlich sinken und der Wirkungsgrad steigen oder die energiewirtschaftlichen Rahmenbedingungen müssen eine hohe Auslastung mit niedrigen Strombezugskosten ermöglichen. Als wirtschaftlich gilt der Elektrolyseurbetrieb, wenn Wasserstoff kostengünstiger hergestellt werden kann als mit konventionellen Verfahren. Dies gelingt v.a. dann, wenn zusätzlich Regelleistung vorgehalten wird. Die Rückverstromung von Wasserstoff ist in den meisten Fällen nicht rentabel. Soll die Elektrolyse früher Einsatz finden, da sie möglicherweise für das Erreichen der Klimaschutzziele unumgänglich wird, bedarf es hierfür gezielter Anreize.:1 Einleitung 1 1.1 Ausgangslage und Problemstellung 1 1.2 Zielsetzung und Lösungsweg 5 2 Rahmenbedingungen im Stromsektor und in der Wasserstoffwirtschaft 9 2.1 Entwicklungen im Stromsektor 9 2.1.1 Flexibilitätsbedarf zur Integration erneuerbarer Energien 10 2.1.2 Ausgestaltung von Stromhandelsplätzen 16 2.1.3 Heutiges und zukünftiges Marktumfeld für Flexibilitätsoptionen 19 2.2 Entwicklungen im Bereich der Wasserstoffwirtschaft 24 2.2.1 Nutzung von Wasserstoff 25 2.2.2 Produktionsverfahren zur Bereitstellung von Wasserstoff 33 2.2.3 Techno-ökonomischer Vergleich ausgewählter Produktionsverfahren 37 2.3 Einsatz eines Elektrolyseurs am Strommarkt 45 3 Modellierung von Spotmarktpreisen 49 3.1 Funktionsweise des Spotmarktes 49 3.2 Vergleich und Auswahl eines Modellierungsansatzes für Spotmarktpreise 51 3.2.1 Anforderungen an die Modellierung 51 3.2.2 Bestehende Modellierungsansätze für Spotmarktpreise 53 3.2.3 Auswahl des Modellierungsansatzes 57 3.2.4 Ansätze zur Modellierung von Preisspitzen und negativen Preisen 59 3.3 Entwicklung eines Modellierungsansatzes für Spotmarktpreise 63 3.3.1 Aufbau des Fundamentalmodells 63 3.3.2 Optimierung des Speichereinsatzes 69 3.3.3 Regime-Switching-Ansatz zur Modellierung von Preisspitzen und negativen Preisen 73 3.3.4 Zusammenfassung des Modellierungsansatzes 79 3.4 Modellvalidierung anhand historischer Daten 81 3.4.1 Eingangsdaten 81 3.4.2 Validierung der simulierten Spotmarktpreise 83 3.4.3 Validierung der simulierten Zusammensetzung der Stromerzeugung 87 3.4.4 Validierung der simulierten CO2-Emissionen 88 3.4.5 Schlussfolgerungen aus der Validierung 89 4 Modellierung von Sekundärregelleistungspreisen 91 4.1 Ausgestaltung des Regelleistungsmarktes 91 4.1.1 Regulatorischer Rahmen 92 4.1.2 Bedarf an Regelleistung 95 4.1.3 Anbieter von Regelleistung 96 4.1.4 Teilnahme eines Elektrolyseurs am Regelleistungsmarkt 97 4.2 Modellierungsansätze für Regelleistungspreise 99 4.2.1 Anforderungen an die Modellierung 100 4.2.2 Bestehende Modellierungsansätze 100 4.2.3 Auswahl eines Modellierungsansatzes 103 4.2.4 Berechnung der Opportunitätskosten für Erzeugungs- und Nachfrageeinheiten 104 4.2.5 Aufbau des Opportunitätskostenansatzes zur Ermittlung der Leistungspreise 109 4.3 Validierung des Opportunitätskostenansatzes anhand historischer Daten 110 4.4 Zusammenfassung des Modellierungsansatzes 114 5 Wirtschaftlichkeitsbewertung eines Elektrolyseurs im zukünftigen Stromsystem 117 5.1 Grundlegende Annahmen für die Wirtschaftlichkeitsberechnung 117 5.2 Energieszenarien für den Stromsektor 119 5.2.1 Energieszenarien ausgewählter Studien 120 5.2.2 Auswahl von Energieszenarien für die weitere Analyse 124 5.3 Entwicklung des Stromsektors in den gewählten Energieszenarien 129 5.3.1 Entwicklung am Spotmarkt 129 5.3.2 Entwicklung der Sekundärregelleistungspreise 134 5.4 Ergebnisse der Wirtschaftlichkeitsbewertung 136 5.4.1 Wasserstoffgestehungskosten des Elektrolyseurs in den Szenarien 137 5.4.2 Zielwerte für techno-ökonomische Parameter des Elektrolyseurs 143 5.4.3 Bestimmung und Modellierung von Betriebskonzepten 148 5.4.4 Wirtschaftlichkeitsbewertung der Betriebskonzepte 152 5.4.5 Zusammenfassung der Wirtschaftlichkeitsbewertung 170 5.5 Einflussfaktoren auf die Wirtschaftlichkeit des Elektrolyseurbetriebs 172 6 Zusammenfassung, kritische Würdigung und Ausblick 175 6.1 Zusammenfassung und Schlussfolgerungen 175 6.2 Kritische Würdigung des verwendeten Ansatzes 182 6.3 Ausblick 184 / The international climate targets can only be achieved by generating more electricity using renewable energy sources. At the same time, flexible electricity consumers are needed to balance the fluctuating generation from renewables. As not all the electricity produced can be used directly, additional energy carriers are required as storage medium. Hydrogen that is produced by the flexible and controllable electrolysis of electricity and water is a versatile energy carrier, e.g. for the chemical industry or fuel cell electric vehicles. So far, this is not yet profitable, because the hydrogen production costs using electrolysis exceed those of competing methods. This could change under altered framework conditions and given the ongoing advances in electrolysis technology, which begs the question: Could hydrogen production using electrolysis be profitable in a future German energy system with high shares of renewable energies? To answer this question, electricity markets and the current market situation for flexible technologies are examined and developments in the field of hydrogen production and demand are presented. A fundamental simulation model is constructed to determine the future development of electricity market prices in different scenarios. The focus lies on two markets of relevance for operating electrolysers: the spot market for short-term electricity trading and the market for balancing power that allows the marketing of flexible loads. The prices on the market for balancing power are calculated using an approach based on opportunity costs. The simulated prices serve as input to an optimization model that maximizes the contribution margin of an electrolyser taking technical constraints into account. Different concepts are considered that include the direct sale of hydrogen, its reconversion into electricity as well as the provision of balancing power. The concepts are evaluated using the revenues and costs and the results used to answer the research question. Three scenarios selected from the literature depict different development pathways of the energy system as well as different values for the electrolyser’s techno-economic parameters up to the year 2050. The scenarios differ with regard to the deployment of renewable energy sources and the prices for energy carriers among other criteria. It becomes clear that profitable operation of electrolysers will, if at all, only be possible in the long term, probably from 2030 onwards. To achieve this, the electrolyser’s specific investment has to decrease and its efficiency has to increase or the framework conditions in the energy system must allow high full load hours of the electrolyser at low electricity costs. Operation is considered profitable if hydrogen can be produced via electrolysis at lower costs than conventional production methods. This is achieved in particular if the electrolyser is used to provide balancing power. Reconverting hydrogen into electricity is not profitable in most cases. However, electrolysis may become essential at an earlier point in time to meet climate targets. In this case, specific incentives are needed for its use.:1 Einleitung 1 1.1 Ausgangslage und Problemstellung 1 1.2 Zielsetzung und Lösungsweg 5 2 Rahmenbedingungen im Stromsektor und in der Wasserstoffwirtschaft 9 2.1 Entwicklungen im Stromsektor 9 2.1.1 Flexibilitätsbedarf zur Integration erneuerbarer Energien 10 2.1.2 Ausgestaltung von Stromhandelsplätzen 16 2.1.3 Heutiges und zukünftiges Marktumfeld für Flexibilitätsoptionen 19 2.2 Entwicklungen im Bereich der Wasserstoffwirtschaft 24 2.2.1 Nutzung von Wasserstoff 25 2.2.2 Produktionsverfahren zur Bereitstellung von Wasserstoff 33 2.2.3 Techno-ökonomischer Vergleich ausgewählter Produktionsverfahren 37 2.3 Einsatz eines Elektrolyseurs am Strommarkt 45 3 Modellierung von Spotmarktpreisen 49 3.1 Funktionsweise des Spotmarktes 49 3.2 Vergleich und Auswahl eines Modellierungsansatzes für Spotmarktpreise 51 3.2.1 Anforderungen an die Modellierung 51 3.2.2 Bestehende Modellierungsansätze für Spotmarktpreise 53 3.2.3 Auswahl des Modellierungsansatzes 57 3.2.4 Ansätze zur Modellierung von Preisspitzen und negativen Preisen 59 3.3 Entwicklung eines Modellierungsansatzes für Spotmarktpreise 63 3.3.1 Aufbau des Fundamentalmodells 63 3.3.2 Optimierung des Speichereinsatzes 69 3.3.3 Regime-Switching-Ansatz zur Modellierung von Preisspitzen und negativen Preisen 73 3.3.4 Zusammenfassung des Modellierungsansatzes 79 3.4 Modellvalidierung anhand historischer Daten 81 3.4.1 Eingangsdaten 81 3.4.2 Validierung der simulierten Spotmarktpreise 83 3.4.3 Validierung der simulierten Zusammensetzung der Stromerzeugung 87 3.4.4 Validierung der simulierten CO2-Emissionen 88 3.4.5 Schlussfolgerungen aus der Validierung 89 4 Modellierung von Sekundärregelleistungspreisen 91 4.1 Ausgestaltung des Regelleistungsmarktes 91 4.1.1 Regulatorischer Rahmen 92 4.1.2 Bedarf an Regelleistung 95 4.1.3 Anbieter von Regelleistung 96 4.1.4 Teilnahme eines Elektrolyseurs am Regelleistungsmarkt 97 4.2 Modellierungsansätze für Regelleistungspreise 99 4.2.1 Anforderungen an die Modellierung 100 4.2.2 Bestehende Modellierungsansätze 100 4.2.3 Auswahl eines Modellierungsansatzes 103 4.2.4 Berechnung der Opportunitätskosten für Erzeugungs- und Nachfrageeinheiten 104 4.2.5 Aufbau des Opportunitätskostenansatzes zur Ermittlung der Leistungspreise 109 4.3 Validierung des Opportunitätskostenansatzes anhand historischer Daten 110 4.4 Zusammenfassung des Modellierungsansatzes 114 5 Wirtschaftlichkeitsbewertung eines Elektrolyseurs im zukünftigen Stromsystem 117 5.1 Grundlegende Annahmen für die Wirtschaftlichkeitsberechnung 117 5.2 Energieszenarien für den Stromsektor 119 5.2.1 Energieszenarien ausgewählter Studien 120 5.2.2 Auswahl von Energieszenarien für die weitere Analyse 124 5.3 Entwicklung des Stromsektors in den gewählten Energieszenarien 129 5.3.1 Entwicklung am Spotmarkt 129 5.3.2 Entwicklung der Sekundärregelleistungspreise 134 5.4 Ergebnisse der Wirtschaftlichkeitsbewertung 136 5.4.1 Wasserstoffgestehungskosten des Elektrolyseurs in den Szenarien 137 5.4.2 Zielwerte für techno-ökonomische Parameter des Elektrolyseurs 143 5.4.3 Bestimmung und Modellierung von Betriebskonzepten 148 5.4.4 Wirtschaftlichkeitsbewertung der Betriebskonzepte 152 5.4.5 Zusammenfassung der Wirtschaftlichkeitsbewertung 170 5.5 Einflussfaktoren auf die Wirtschaftlichkeit des Elektrolyseurbetriebs 172 6 Zusammenfassung, kritische Würdigung und Ausblick 175 6.1 Zusammenfassung und Schlussfolgerungen 175 6.2 Kritische Würdigung des verwendeten Ansatzes 182 6.3 Ausblick 184
280

Reducing the Production Cost of Hydrogen from Polymer Electrolyte Membrane Electrolyzers through Dynamic Current Density Operation

Ginsberg, Michael J. January 2023 (has links)
A worldwide shift from fossil fuels to zero carbon energy sources is imperative to limit global warming to 1.5°C. While integrating high penetrations of VRE into the grid may introduce the need for upgrading an aging electrical system, renewable energy represents a new opportunity to decarbonize multiple sectors. Otherwise curtailed solar and wind energy can accelerate deep decarbonization in hard-to-reach sectors - transportation, industrial, residential, and commercial buildings, all of which must be decarbonized to limit global warming. With renewable energy as its input, electrolytic H₂ represents a solution to the supply-demand mismatch created by the proliferation of VREs on a grid designed for on-demand power. Electrolytic H₂ can stabilize the grid since the H2 created can be stored and transferred. Thus, Chapter 1 introduces the opportunity of green H2 in the context of low-cost VREs as a means of deep decarbonization through sector coupling, and an overview of the techno-economics, key technologies, and life cycle assessment versus the incumbent steam methane reformation. The growing imbalances between electricity demand and supply from VREs create increasingly large swings in electricity prices. Capable of operating with variable input power and high current densities without prohibitively large ohmic losses, polymer electrolyte membrane (PEM) electrolyzers are well suited to VREs. In Chapter 2, polymer electrolyte membrane (PEM) electrolyzers are shown to help buffer against these supply demand imbalances, while simultaneously minimizing the levelized cost of hydrogen (LCOH) by ramping up production of H2 through high-current-density operation when low-cost electricity is abundant, and ramping down current density to operate efficiently when electricity prices are high. A techno-economic model is introduced that optimizes current density profiles for dynamically operated electrolyzers, while accounting for the potential of increased degradation rates, to minimize LCOH for any given time-of-use (TOU) electricity pricing. This model is used to predict LCOH from different methods of operating a PEM electrolyzer for historical and projected electricity prices in California and Texas, which were chosen due to their high penetration of VREs. Results reveal that dynamic operation could enable reductions in LCOH ranging from 2% to 63% for historical 2020 pricing and 1% to 53% for projected 2030 pricing. Moreover, high-current-density operation above 2.5 A cm−2 is shown to be increasingly justified at electricity prices below $0.03 kWh−1. These findings suggest an actionable means of lowering LCOH and guide PEM electrolyzer development toward devices that can operate efficiently at a range of current densities. Chapter 3 uses techno-economic modeling to analyze the benefits of producing green (zero carbon) hydrogen through dynamically operated PEM electrolyzers connected to off-grid VREs. Dynamic electrolyzer operation is considered for current densities between 0 to 6 A cm-2 and compared to operating a PEM electrolyzer at a constant current density of 2 A cm-2. The analysis was carried out for different combinations of VRE to electrolysis (VRE:E) capacity ratios and compositions of wind and solar electricity in 4 locations – Ludlow, California, Dalhart, Texas, Calvin, North Dakota, and Maple Falls, Washington. For optimal VRE:E and wind:PV capacity ratios, dynamic operation of the PEM electrolyzer was found to reduce the LCOH by 5% to 9%, while increasing H₂ production by 134% to 173%, and decreasing excess (i.e. curtailed) electrical power by 82% to 95% compared to constant current density operation. Under dynamic electrolyzer operation, the minimum LCOH is achieved at higher VRE:E capacity ratios than constant current density operation and a VRE mix that was more skewed to whichever VRE source with the higher capacity factor at a given location. In addition, dynamically operated electrolyzers are found to achieve LCOH values within 10% of the minimum LCOH over a significantly wider range of VRE:E capacity ratios and VRE mixes than constant electrolyzers. As demonstrated, the techno-economic framework described herein may be used to determine the optimal VRE:E capacity and VRE mix for dynamically-operated green hydrogen systems that minimize cost and maximize the amount of H2 produced. Chapter 4 focuses on the production of high-purity water and H₂ from seawater. Current electrolyzers require deionized water so they need to be coupled with desalination units. This study shows that such coupling is cost-effective in H₂ generation, and offers benefits to thermal desalination, which can utilize waste heat from electrolysis. Furthermore, it is shown that such coupling can be optimized when electrolyzers operate at high current density, using low-cost solar and/or wind electricity, as such operation increases both H₂ production and heat generation. Results of techno-economic modeling of PEM electrolyzers define thresholds of electricity pricing, current density, and operating temperature that make clean electrolytic hydrogen cost-competitive with H₂ from steam methane reforming. By using 2020 hourly electricity pricing in California and Texas, H₂ is shown to be produced from seawater in coupled desalination-electrolyzer systems at prices near $2, reaching cost parity with SMR-produced H₂. Chapter 5 concludes the dissertation with an overview of the challenges and research needs for PEM electrolyzers at scale, including projected iridium needs, iridium thrifting, recycling methods, key degradation mechanisms, a failure modes and effects analysis, and LCOH projections.

Page generated in 0.0584 seconds