Spelling suggestions: "subject:"electrolytic capacitor"" "subject:"lectrolytic capacitor""
1 |
Synthesis of carbon nanotubes on metallic grids for applications in electrochemical capacitorsNasuhoglu, Deniz. January 2007 (has links)
Recently, there has been a growing demand for electrode materials to serve as electrochemical capacitors (EC). It has been an important issue to come up with environment friendly electric power sources to reduce pollution caused by combustion engines of automotive systems. Even though conventional battery systems and fuel cells supply high energy, they lack the high specific power that would be required for hybrid power sources. The ECs can fill the gap between conventional capacitors and batteries. / Carbon nanotubes (CNTs), discovered by Iijima in 1991, attracted great attention in recent years for their unique properties, such as mesoporous character, excellent conductivity, moderate to high specific surface area as well as chemical and mechanical stability. These properties of CNTs make them useful in a wide of range applications including electrode materials for EC applications. / The preparation of CNT electrodes is accomplished by either pasting them onto metallic current collectors with the use of binder materials such as PVDF or growing them from deposited metal nanoparticles on substrates such as graphite paper. The deposition of metal nanoparticles is achieved via sputtering techniques or lengthy electrochemical deposition methods. The aim of this research was to simplify the preparation step by growing CNTs directly on metallic substrates and to study the relationship between surface area and electrochemical capacitance of CNTs. CNTs were produced on metal-alloy grids via chemical vapor deposition (CVD) of acetylene (C2H2). The physical characterization of the samples was achieved by Field Emission Scanning Electron Microscopy (FE-SEM), Raman spectroscopy and Single point BET surface area. The electrochemical performance of the samples was evaluated by cyclic voltammetry (CV) in a three electrode electrochemical cell with 1M sulfuric acid (H2SO4) solution as the electrolyte.
|
2 |
Synthesis of carbon nanotubes on metallic grids for applications in electrochemical capacitorsNasuhoglu, Deniz. January 2007 (has links)
No description available.
|
3 |
Thin-film trench capacitors for silicon and organic packagesWang, Yushu 29 August 2011 (has links)
The continuous trend towards mega-functional, high-performance and ultra-miniaturized system has been driving the need for advances in novel materials with superior properties leading to thin components, high-density interconnect substrates and interconnections. Power supply and management is becoming a critical bottleneck for the advances in such mega-functional systems because power components do not scale down with the rest of the system resulting in bulky and stand-alone power modules. Amongst the power components, thin film capacitors are considered the most challenging to integrate because of several manufacturability concerns. The challenges are related to process compatibility of high permittivity dielectrics with substrates and high surface area electrodes, yield, leakage and losses. This thesis focuses on novel thin film capacitor technologies that address some of these critical challenges. / Thesis advisor has approved the addition of errata to this item. The abstract text in the metadata record has been modified to match the document text.
|
4 |
Determination of the Shelf Life of Aluminum Electrolytic Capacitors.Wynne, Edward McFaddin 05 1900 (has links)
The aluminum electrolytic capacitor is used extensively in the electric utility industry. A factor limiting the storage of spare capacitors is the integrity of the aluminum oxide dielectric, which over time breaks down contributing to a shelf life currently estimated at one nuclear power electric generating station to be approximately five years. This project examined the electrical characteristics of naturally aged capacitors of several different styles to determine if design parameters were still within limits. Additionally, the effectiveness of a technique known as “Reforming” was examined to determine its impact on those characteristics.
|
5 |
Low voltage electrolytic capacitor pulse forming inductive network for electric weaponsMays, Thomas Allen. 06 1900 (has links)
Electric weapons, such as the railgun, require a pulse power supply capable of providing reliable highcurrent, high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor-generator sets, so a solid-state system would be desirable, but high voltage capacitor systems are not robust enough for the field. We propose here a Low Voltage Electrolytic Capacitor Pulse Forming Inductive Network (LVEC PFIN) which stores power in a relatively low voltage capacitor bank and provides weapon power pulses by first draining the capacitors into a power inductor and then interrupting the flow of current via a switch counterpulsing technique in order to achieve railgun-appropriate voltages. For this thesis, a 13 kJ LVEC PFIN was constructed, using solid-state semiconductor switches to redirect 25 kA of current into a 1 m. load, and the redirection of larger currents is clearly feasible. This technique may be a viable alternative once the energy densities and equivalent series resistances of low voltage capacitors and ultracapacitors reach the necessary levels.
|
6 |
High power carbon based supercapacitors /Wade, Timothy Lawrence. January 2006 (has links)
Thesis (Ph.D.)--University of Melbourne, School of Chemistry, 2006. / Typescript. Includes bibliographical references.
|
7 |
Modeling and analysis of aluminum/air fuel cellUnknown Date (has links)
The technical and scientific challenges to provide reliable sources energy for US
and global economy are enormous tasks, and especially so when combined with strategic
and recent economic concerns of the last five years. It is clear that as part of the mix of
energy sources necessary to deal with these challenges, fuel cells technology will play
critical or even a central role. The US Department of Energy, as well as a number of the
national laboratories and academic institutions have been aware of the importance such
technology for some time. Recently, car manufacturers, transportation experts, and even
utilities are paying attention to this vital source of energy for the future. In this thesis, a
review of the main fuel cell technologies is presented with the focus on the modeling, and
control of one particular and promising fuel cell technology, aluminum air fuel cells. The
basic principles of this fuel cell technology are presented. A major part of the study
consists of a description of the electrochemistry of the process, modeling, and simulations
of aluminum air FC using Matlab Simulink™. The controller design of the proposed
model is also presented. In sequel, a power management unit is designed and analyzed as an alternative source of power. Thus, the system commutes between the fuel cell output
and the alternative power source in order to fulfill a changing power load demand. Finally,
a cost analysis and assessment of this technology for portable devices, conclusions and
future recommendations are presented. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.
|
8 |
Carbon Nanotubes chemical vapor deposition synthesis and application in electrochemical double layer supercapacitors /Turano, Stephan Parker. January 2005 (has links) (PDF)
Thesis (M. S.)--Materials Science and Engineering, Georgia Institute of Technology, 2005. / Ready, Jud, Committee Co-Chair ; Carter, Brent, Committee Co-Chair ; Snyder, Bob, Committee Member ; Wang, Zhong Lin, Committee Member. Includes bibliographical references.
|
9 |
Étude et élaboration d’un système de surveillance et de maintenance prédictive pour les condensateurs et les batteries utilisés dans les Alimentations Sans Interruptions (ASI) / Study and elaboration of a monitoring and predictive maintenance system for capacitors and batteries used in Uninterruptible Power Supplies (UPS)Abdennadher, Mohamed Karim 25 June 2010 (has links)
Pour assurer une énergie électrique de qualité et de façon permanente, il existe des systèmes électroniques d’alimentation spécifiques. Il s’agit des Alimentations Sans Interruptions (ASI). Une ASI comme tout autre système peut tomber en panne ce qui peut entrainer une perte de redondance. Cette perte induit une maintenance corrective donc une forme d’indisponibilité ce qui représente un coût. Nous proposons dans cette thèse de travailler sur deux composants parmi les plus sensibles dans les ASI à savoir les condensateurs électrolytiques et les batteries au plomb. Dans une première phase, nous présentons, les systèmes de surveillance existants pour ces deux composants en soulignant leurs principaux inconvénients. Ceci nous permet de proposer le cahier des charges à mettre en œuvre. Pour les condensateurs électrolytiques, nous détaillons les différentes étapes de caractérisation et de vieillissement ainsi que la procédure expérimentale de vieillissement standard accéléré et les résultats associés. D’autre part, nous présentons les résultats de simulation du système de surveillance et de prédiction de pannes retenu. Nous abordons la validation expérimentale en décrivant le système développé. Nous détaillons les cartes électroniques conçues, les algorithmes mis en œuvre et leurs contraintes d’implémentation respectifs pour une réalisation temps réel. Enfin, pour les batteries au plomb étanches, nous présentons les résultats de simulation du système de surveillance retenu permettant d’obtenir le SOC et le SOH. Nous détaillons la procédure expérimentale de vieillissement en cycles de charge et décharge de la batterie nécessaire pour avoir un modèle électrique simple et précis. Nous expliquons les résultats expérimentaux de vieillissement pour finir avec des propositions d’amélioration de notre système afin d’obtenir un SOH plus précis. / To ensure power quality and permanently, some electronic system supplies exist. These supplies are the Uninterrupted Power Supplies (UPS). An UPS like any other system may have some failures. This can be a cause of redundancy loss. This load loss causes a maintenance downtime which may represent a high cost. We propose in this thesis to work on two of the most sensitive components in the UPS namely electrolytic capacitors and lead acid batteries. In a first phase, we present the existing surveillance systems for these two components, highlighting their main drawbacks. This allows us to propose the specifications which have to be implemented for this system. For electrolytic capacitors, we detail different stages of characterization ; the aging accelerated standard experimental procedure and their associated results. On the other hand, we present the simulation results of monitoring and failure prediction system retained. We discuss the experimental validation, describing the developed system. We detail the electronic boards designed, implemented algorithms and their respective constraints for a real time implementation. Finally, for lead acid batteries, we present the simulation results of the monitoring system adopted to obtain the SOC and SOH. We describe the aging experimental procedure of charging and discharging cycles of the batteries needed to find a simple and accurate electric models. We explain the aging experimental results and in the end we give suggestions for improving our system to get a more accurate SOH.
|
10 |
Carbon Nanotubes: Chemical Vapor Deposition Synthesis and Application in Electrochemical Double Layer SupercapacitorsTurano, Stephan Parker 08 March 2005 (has links)
Carbon nanotubes (CNTs) have become a popular area of materials science research due to their outstanding material properties coupled with their small size. CNTs are expected to be included in a wide variety of applications and devices in the near future. Among these devices which are nearing mass production are electrochemical double layer (ECDL) supercapacitors. The current methods to produce CNTs are numerous, with each synthesis variable resulting in changes in the physical properties of the CNT.
A wide array of studies have focused on the effects of specific synthesis conditions. This research expands on earlier work done using bulk nickel catalyst, alumina supported iron catalyst, and standard chemical vapor deposition (CVD) synthesis methods. This work also investigates the effect of an applied voltage to the CVD chamber during synthesis on the physical nature of the CNTs produced. In addition, the work analyzes a novel nickel catalyst system, and the CNTs produced using this catalyst. The results of the effects of synthesis conditions on resultant CNTs are included. Additionally, CNT based ECDL supercapacitors were manufactured and tested.
Scanning electron microscope (SEM) analysis reveals that catalyst choice, catalyst thickness, synthesis temperature, and applied voltage have different results on CNT dimensions. Nanotube diameter distribution and average diameter data demonstrate the effect of each synthesis condition. Additionally, the concept of an alignment parameter is introduced in order to quantify the effect of an electric field on CNT alignment. CNT based ECDL supercapacitors testing reveals that CNTs work well as an active material when a higher purity is achieved. The molarity of the electrolyte also has an effect on the performance of CNT based ECDL supercapacitors.
On the basis of this research, we conclude that CNT physical dimensions can be moderately controlled based on the choice of synthesis conditions. Also, the novel nickel catalyst system investigated in this research has potential to produce bulk quantities of CNT under specific conditions. Finally, purified CNTs are recommended as a suitable active material for ECDL supercapacitors.
|
Page generated in 0.0961 seconds