Spelling suggestions: "subject:"alectron bem evaporation"" "subject:"dlectron bem evaporation""
1 |
The Study of Electrical Property and Microstructure of InSb Thin FilmJang, Chih-Yuan 01 July 2002 (has links)
The relation between the electrical property and the material microstructure of InSb grown on Si utilizing electron beam evaporation technology has been investigated. The improvement of the InSb electrical property with controlling annealing environment after post annealing is demonstrated.
The crystal structure of InSb thin films were characterized with X-ray diffraction (XRD) and the surface morphology was examined by scanning electron microscope (SEM). The composition of InSb films was analyzed by electron probe microscope analysis (EPMA) and the mobility of InSb films were measured by Hall measurement. Finally, the grain size and texture of InSb films microstructure were studied by transmission electron microscope (TEM).
The films were grown with different In/Sb flux ratio by controlling electron energy during electron evaporation. The results show that the poly-InSb films were formed due to large lattice difference between Si and InSb . The InSb films which had higher In concentration behave higher mobility. The highest mobility of the as-grown film is around 12000(cm2/Vs). The mobility of InSb can be improved to 26000 (cm2/Vs) by added extra Sb source annealed at 500¢J for 5 hours in an sealed ampoule. The extra Sb which dissolved with the existed In droplet in the film and adjust the composition ratio of In/Sb closing to 1:1. Besides, the post-annealing process provides the InSb film to gain much better texture. Both these two factors contribute to improve the electrical property of InSb films.
|
2 |
Study of AZO Multilayer Coatings on Glasses by Electron Beam EvaporationShueh, En-Yi 20 August 2008 (has links)
In this study, the AZO thin films were deposited with various manufacturing conditions, such as working pressure of oxygen and substrate temperature, by e-beam evaporation. The microstructure of the AZO film was observed by SEM and AFM. Sheet resistance was measured using four-point probe method. Optical transmittance was measured in the visible range by UV spectrophotometer. Finally, AZO transparent film was used as a substitute for ITO to fabricate the radiation-resistant glasses.
The optimum parameters for depositing AZO films are glass substrates of 80¢J and working pressure of 1¡Ñ10-4 Torr. The film resistance is 9.2¡Ñ10-4 £[-cm with a film thickness of 60 nm. The refractive index was measured to be 2.05 at a wavelength of 510 nm. The optical transmittance of the prepared films was above 83 % in the visible range.
The manufacturing conditions for depositing AZO multilayer coatings are working pressure of 5.0¡Ñ10-5 Torr, ion gun working pressure of 6.0¡Ñ10-5 Torr, voltage of 6.2 V, oxygen gas flow rate of 36 sccm and glass substrates of 80¢J. The optical transmittance of the glass was above 94 % in the visible range.
|
3 |
Electrical, Structural And Optical Properties Of Aggase2-xsx Thin Films Grown By Sintered PowderKaraagac, Hakan 01 September 2010 (has links) (PDF)
In the present study, the effect of S and Se substitution on structural, electrical and optical properties of AgGa(Se2-xSx) thin films has been investigated.
AgGa(Se0.5S0.5 )2 thin films were prepared by using the thermal evaporation method. X-ray diffraction (XRD) analysis has revealed that the transformation from amorphous to polycrystalline structure took place at about 450 oC. The detailed information about the stoichometry and the segregation mechanisms of the constituent elements in the structure has been obtained by performing both energy dispersive X-ray analysis (EDXA) and X-ray photoelectron spectroscopy (XPS) measurements.
AgGaSe2 thin films were deposited by using both electron-beam (e-beam) and sputtering techniques. In e-beam evaporated thin films, the effect of annealing on the structural and morphological properties of the deposited films has been studied by means of XRD, XPS, scanning electron microscopy (SEM) and EDXA measurements. Structural analysis has shown that samples annealed between 300 and 600 oC were in polycrystalline structure with co-existance of Ag, Ga2Se3, GaSe, and AgGaSe2. The variation of surface morphology, chemical composition and bonding nature of constituent elements on post-annealing has been determined by EDXA and XPS analyses.
AgGaSe2 thin films were also prepared by using sputtering technique. XRD measurements have shown that the mono-phase AgGaSe2 structure is formed at annealing temperature of 600 oC. The crystal-field and spin-orbit splitting levels were resolved. These levels around 2.03 and 2.30 eV were also detected from the photospectral response measurements.
Thin films of Ag-Ga-S (AGS) compound were prepared by using AgGaS2 single crystalline powder and deposition of the excess silver (Ag) intralayer with double source thermal evaporation method. As a consequence of systematic optimization of thickness of Ag layer, Ag(Ga,S) with the stoichiometry of AgGa5S8 and AgGaS2 were obtained and systematic study to obtain structural, electrical and optical properties was carried out.
|
4 |
Construção de um sistema de epitaxia por feixe molecular / Building of a molecular beam epitaxy systemFiorentini, Giovanni Alessandro 29 May 2007 (has links)
Orientadores: Marco Antonio Robert Alves, Gilberto Medeiros Ribeiro / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-11T09:04:08Z (GMT). No. of bitstreams: 1
Fiorentini_GiovanniAlessandro_M.pdf: 8940577 bytes, checksum: aa3711a9b5e0821a30c942ef0760c8f7 (MD5)
Previous issue date: 2008 / Resumo: O crescimento epitaxial de nanoestruturas semicondutoras e metálicas é algo de grande interesse atualmente em ciência e tecnologia devido às propriedades singulares apresentadas pela matéria na escala nanométrica. Esta dissertação teve como objetivo principal a construção de um sistema de crescimento epitaxial baseado na técnica de epitaxia por feixe molecular (MBE, do inglês Molecular Beam Epitaxy). Inicialmente, aspectos básicos sobre a física e a tecnologia envolvidas em um sistema de MBE foram analisados. O que é MBE e quais são os princípios que governam seu funcionamento são perguntas intrigantes a um aluno do curso de engenharia elétrica. No decorrer do trabalho, todo o complexo sistema vácuo (bombeamento e monitoramento) teve de ser cuidadosamente montado e ajustado até que se obtivesse as condições ótimas de trabalho dados os componentes disponíveis bem como suas características e limitações. Conceitos teóricos e práticos foram aplicados de forma a tornar o sistema o mais simples, eficiente e amigável possível. As evaporadoras por feixe de elétrons foram montadas, testadas e ajustadas até que se pudesse alcançar os parâmetros de funcionamento desejados para estes dispositivos tão importantes dentro de um sistema de MBE. Toda a instrumentação envolvida no acionamento e no monitoramento destas fontes foi desenvolvido com base em conceitos simples de eletrônica analógica e, em alguns momentos, digital, além de soluções de software, sempre usando LabView. Os resultados do trabalho de construção do sistema puderam ser caracterizados posteriormente de maneira a aferir a confiabilidade dos parâmetros utilizados e das amostras crescidas. Estes resultados foram baseados em técnicas de microscopia de varredura por pontas (SPM, do inglês Scanning Probe Microscopy), as quais forneceram informações detalhadas sobre as nanoestruturas formadas e as superfícies dos substratos, dados estes muito importantes e que podem ser utilizados como indicadores das codições de funcionamento do sistema de crescimento / Abstract: The epitaxial growth of semiconductor and metallic nanostructures is a target of great interest nowadays in science and technology due to the unique properties presented by the matter at the nanometer scale. This dissertation had as the main goal the construction of a system for epitaxial growth based on the Molecular Beam Epitaxy (MBE) technique. First of all, basic aspects about the physics and the technology involved in a MBE system were analyzed. What is MBE and what are the principles that govern its operation are intriguing questions for an electrical engineering student. During this work, the entire complex vacuum system (pumping and monitoring) had to be carefully mounted and adjusted until the optimum conditions were obtained for the available components as well as their characteristics and limitations. Theoretical and practical concepts were applied so that the system become as simple, efficient and friendly as possible. The electron beam evaporation sources were mounted, tested and adjusted until the desired working parameters for these important devices were achieved. The whole instrumentation involved in the driving and in the monitoring of these sources was developed based on simple concepts of analog and, in some cases, digital electronics, besides software solutions, always using LabView. The performance of the system was evaluated by structural characterization using scanning probe microscopy techniques (SPM), which gave detailed information about the formed nanostructures and the substrates surfaces. These data can be used as indicators of the growth system operation conditions / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
|
5 |
Hydrogen storage capacity of the Ti-Pd multilayer systemsMagogodi, Steven Mothibakgomo January 2020 (has links)
>Magister Scientiae - MSc / Hydrogen has high energy density and it is regarded as the future energy carrier. Hydrogen can be stored as a gas in high-pressure cylinders, as a liquid in cryogenic tanks and as a solid in metal hydrides. The storage of hydrogen in gas and liquid form has many limitations. Light metal hydrides show high energy density and are a promising and more practical mode of hydrogen storage. In particular, titanium and its alloys are promising metal hydrides for hydrogen storage due to their high affinity to hydrogen. The aim of this study is to investigate the effect of thermal annealing on hydrogen storage capacity of Ti-Pd multilayer systems. Ti-Pd multilayer films were prepared on CP-Ti (commercial pure Ti) and Ti6Al4V substrates using an electron beam evaporator equipped with a thickness monitor. The sequential deposition of layers Pd(50nm)/Ti(25nm)/Pd(50nm) was done at a constant deposition rate of 0.6 Å/s. The first batch of samples were thermally annealed at 550 °C in vacuum for two hours, the second batch of samples were annealed at 550 oC under H2(15%)/Ar(85%) gas mixture for two hours and the third series of samples was annealed under pure H2 gas at 550 oC for one hour. SEM showed relatively homogeneous and smooth topography of surfaces in as-deposited samples, while a rough textured surface was observed in both samples annealed under vacuum and under H2/Ar gas mixture. The samples annealed under pure H2 gas did not show any sign of crystallites grow but instead a relatively smooth surface with sign of etching. XRD revealed structural transformation as evidenced by the presence of PdTi2 phase in samples annealed under vacuum; in samples annealed under the gas mixture Pd2Ti was noted in addition to TiH2 and TiO2. While the TiH2 phase is an indication of hydrogen absorption, the TiPd2 phase suggests intermixing of the deposited layers and the presence of TiO2 is evidence of oxidation. The samples annealed under pure H2 gas showed only TiH2 with no trace of structural transformation. RBS confirmed the intermixing of layers in the samples annealed under vacuum and H2(15%)/Ar(85%) gas mixture, while samples annealed under pure H2 gas did not show any intermixing of layers. ERDA revealed an average H content of ~ 3.5 at.% in CP-Ti and ~6.2 at.% in Ti6Al4V for samples annealed under H2(15%)/Ar(85%) gas mixture. We recorded an hydrogen content of ~19.5 at.% in CP-Ti annealed under pure H2 while ~25.5 at.% was found in Ti6Al4V annealed under the same conditions. When the thickness of the Pd catalyst layers was increased to 100 nm (i.e. Pd (100 nm)/Ti (25 nm)/Pd (100 nm)), only ~ 12.5 at.% and 11.2 at. % hydrogen content was recorded in samples prepared on CP-Ti and Ti6Al4V alloy respectively, both annealed under pure hydrogen for one hour as above.
|
6 |
Développement d'empilements métalo-diélectriques pour des applications optiques : conception, réalisation et caractérisation / Development of metallic dielectric stacks for optical applications : design, production and characterizationDémarest, Nathalie 12 December 2013 (has links)
Les travaux de cette thèse concernent l'étude de l'influence des conditions de dépôt sur la microstructure et les propriétés optiques de monocouches dans le but de réaliser des filtres optiques particuliers commercialisables. La méthode de dépôt utilisée est l'évaporation par canon à électrons avec assistance ionique. L'un des deux projets a été de vérifier la faisabilité de filtres optiques infrarouges dans la gamme [2-15] µm avec des matériaux non toxiques. Les monocouches des trois fluorures étudiées ont montré des comportements différents suivant les conditions de dépôt, notamment suivant la température du substrat qui influe fortement sur leur microstructure. L'association du BaF₂ au germanium, avec des réglages optimisés, montre pour différents filtres réalisés des résultats proches de la théorie. Ces filtres sont donc commercialisables. Le second projet a été de développer une machine de dépôt dans le but de pouvoir réaliser des filtres complexes d'une centaine de couches d'épaisseur variable (de 15 à 300 nm) associant des monocouches de TiO₂ à des monocouches de SiO₂. L'étude de l'influence des paramètres de dépôts (pression, assistance ionique, préchauffage du matériau) au travers différentes caractérisations (MEB, AFM, ellipsométrie) a permis une optimisation des réglages de l'enceinte de dépôt plus efficace et adaptée en fonction des spécifications des filtres optiques à réaliser. Puis, une étude ellipsométrique poussée de l'indice de réfraction des monocouches de TiO₂ en fonction de leur épaisseur a conduit à une nette évolution des résultats pour la réalisation du filtre complexe. / This thesis deals the study of deposition conditions 'effect on the microstructure and optical properties of monolayers in order to achieve marketable optical filters, with particular specifications. All filters and monolayers were deposited by ion-assisted electron-beam evaporation technique. One of the two projects was to test the feasibility of infrared optical filters in the range [2-15] µm with non-toxic materials. The study of monolayers of three fluorides showed different behaviors depending on the deposition conditions especially as a function of the substrate temperature that affects their microstructure. For different filters realized, the association of BaF₂ with germanium, settings of deposition optimized, shows results close to the theory and these filters are marketable. The second project was to develop a deposition chamber in order to realize complex filters built with one hundred layers of variable thickness (15 to 300 nm) associating monolayers of TiO₂ with monolayers of SiO₂. The study of the influence of deposition parameters (pressure, ionic assistance, preheating of material) through different characterizations (SEM, AFM, ellipsometry) allowed the optimization of deposition's parameter settings more effective, and adapted according to the specifications of the optical filters to realize. Then, an ellipsometric advanced study of the refractive index of TiO₂ monolayers depending on their thickness led to a significant change in results for the realization of complex filter.
|
7 |
The Growth of Columnar Thin Films and Their Characterization Within the Visible and Near Infrared Spectral BandsBooso, Benjamin David 05 May 2010 (has links)
No description available.
|
8 |
Soft X-ray Multilayers As Polarizing Elements : Fabrication, And Studies Of Surfaces And InterfacesNayak, Maheswar 08 1900 (has links)
The exploitation of the soft x-ray/extreme ultra-violet (EUV) region of the electromagnetic spectrum is possible mainly due to the development of multilayer (ML) mirrors. This region of the electromagnetic spectrum offers great opportunities in both science and technology. The shorter wavelength allows one to see smaller features in microscopy and write finer features in lithography. High reflectivity with moderate spectral bandwidth at normal/near-normal incidence can be achieved in soft x-ray/ EUV spectral range using these ML mirrors, where natural crystals with the required large periodicity are not available. These MLs are generally artificial Bragg’s reflectors, which consist of alternative high and low density materials with periodicity in the nanometer range. The main advantages of ML optics stem from the tunability of layer thickness, composition, lateral gradient, and the gradient along the normal to the substrate; these can be tailored according to the desired wavelength regime. They have the great advantage of being adaptable to figured surfaces, enabling their use as reflective optics in these spectral regions, for focusing and imaging applications. Broadband reflectivity and wavelength tunability are also possible by using MLs with normal and lateral gradient, respectively. However, fabrication of these ML mirrors requires the capability to deposit uniform, ultra-thin (a few angstroms-thick) films of different materials with thickness control on the atomic scale. Thus, one requires a proper understanding of substrate surfaces, individual layers, chemical reactivity at interfaces and, finally, of the ML structures required for particular applications. The performance of these MLs is limited by (the lack of) contrast in optical constants of the two materials, interfacial roughness, the chemical reactivity of two materials and, finally, errors in the thickness of individual layers.
Soft x-ray/extreme ultra-violet ML mirrors have found a wide range of applications in synchrotron radiation beam lines, materials science, astronomy, x-ray microscopy, x-ray laser, x-ray lithography, polarizers, and plasma diagnostics. The Indus–1 synchrotron radiation (SR) source is an operational 450 MeV machine, which produces radiation up to soft x-rays. Indus-2 is a 2.5 GeV machine, which has been commissioned recently to produce hard x-rays (E > 25 keV). The combination of Indus-1 and Indus-2 will cover a broad energy
spectrum from IR to hard x-rays. Therefore, there is a significant need and opportunity to study MLs of different pairs of materials, with different parameters such as periodicity and optimum thickness of individual layers. The goal of the present thesis is to fabricate MLs for soft x-ray optics and to study their physics for application as polarizers in the wavelength range from 67 Å to 160 Å on the Indus-1 synchrotron source. To accomplish this task, a UHV electron beam evaporation system has been developed indigenously for the fabrication of MLs. Three different ML systems viz., Mo/Si, Fe/B4C and Mo/Y have been fabricated, and their surfaces and interfaces were investigated thoroughly for the polarizer application. X-ray reflectivity (XRR) has been used extensively in the investigations of these MLs. This is because XRR is a highly sensitive non-destructive technique for the characterization of buried interfaces, and gives microscopic information (at atomic resolution) over a macroscopic length scale (a few microns). Numerical analysis of XRR data has been carried out using computer programs. Depth-graded x-ray photoelectron spectroscopy (XPS) has been used for compositional analysis at interfaces for some of the ML structures, as a technique complementary to XRR. The performance of some of these MLs has been tested in the soft x-ray region, using the Indus-1 synchrotron radiation (SR) source. Prior to studying the MLs, a detailed study of the surfaces and interfaces of thin films, bi-layers, and tri-layers was carried out using XRR and the glancing incidence fluorescence technique. The discontinuous-to-continuous transition and the mode of film growth, which are vital to the optimization of layer thickness (basically for the high-atomic number or high-Z layer) in the ML structures, were also investigated using in situ sheet resistance measurement method.
Indus-1 is a soft x-ray SR source that covers atomic absorption edges of many low-Z materials. The present work demonstrates the possibilities of characterizing low-Z thin films and multilayers using soft x-ray resonant reflectivity. In one case, we have shown for first time that soft x-ray resonant reflectivity can be employed as a non-destructive technique for the determination of interlayer composition. In a second study using the Indus-1 SR source, we have shown, by observing the effect of the anomalous optical constant on reflectivity pattern when photon energy is tuned across the atomic absorption edge of the constituent low-Z element, that soft x-ray resonant reflectivity is an element-specific technique.
This thesis is organized into 7 chapters. A brief summary of individual chapters is presented below.
Chapter 1 gives a brief general introduction to x-ray ML optics. This is followed by a discussion of the importance of the soft x-ray region of electromagnetic radiation. The optical properties of x-rays are reviewed and optical constants are calculated for some of the important materials used for x-ray MLs. The refractive index in the x-ray region being less than unity (except absorption edges), the consequent limitation of conventional transmission lenses is discussed. The limitation of glancing angle incidence optics is presented, motivating the need for ML optics, which is discussed along with a theoretically calculated reflectivity profile. The procedure for materials for the MLs for application in different spectral regions is discussed, along with a survey of literature related to the present thesis. The importance of the quality of surfaces and interfaces on the performance of ML structures has been shown through simulations. The applications of soft x-ray MLs are discussed with emphasis on polarization. This is followed by a review of different modes of growth of thin films. Finally, the scope of the present work is highlighted.
Chapter 2 provides brief descriptions of the experimental techniques used in the present investigations and of the numerical methods employed for quantitative data analysis. The XRR technique is discussed elaborately because it has been used extensively. Detailed calculations of x-ray reflectivity from single surfaces, thin films and bi-layers are presented, along with simulated values. The effect of critical angle and Brewster’s angle is also discussed. Data analysis methods for computing x-ray reflectivity from multilayer structures, based on dynamical and kinematical models, have been discussed. The effect of roughness on XRR has been discussed based on the recursion formalism of dynamical theory. Simulations of XRR and experimental XRR data fitting are carried out using computer programs. The XRR experimental set up is also outlined. A theoretical background is given for the electrical measurements on thin films. This is followed by a brief overview of x-ray photoelectron spectroscopy (XPS) and interpretation of spectra. Finally, the glancing incidence x-ray fluorescence (GIXRF) technique is outlined.
Chapter 3 describes in detail the ultra-high vacuum electron beam evaporation system developed in house especially for the fabrication of thin films and x-ray multilayer optics. At the outset, a brief overview of different deposition techniques commonly used for the fabrication of x-ray optical elements is presented. Design, fabrication, and assembly of different accessories are discussed. The control of thickness and uniformity of the films deposited has been checked through the experiments, whose results are provided. The results obtained for ML test structures are presented to show the capability of system in carrying out fabrication of high quality x-ray ML structures. Finally, the versatility of evaporation system incorporating in situ characterization facilities such as -situ electrical measurements for different substrate temperatures is illustrated.
Chapter 4 presents a study of the growth of ultra-thin Mo films at different substrate temperatures using in situ sheet resistance measurements. First, a theoretical background is given on the different stages of island growth and on factors affecting thin film growth, followed by a discussion of the possible electrical conduction phenomena in continuous and discontinuous metal films. The nature of thin film growth and a detailed microscopic picture at different growth stages are derived from a modeling of sheet resistance data obtained in situ. The various conduction mechanisms have been identified in different stages of growth. In the island growth stage, the isotropic and anisotropic growth of Mo islands is identified from the model. In the insulator-metal transition region, experimentally determined values of critical exponent of conductivity agrees well with theoretically predicted values for a two-dimensional (2D) percolating system, revealing that Mo films on float glass substrate is predominantly a 2D structure. The minimum thickness for which Mo films becomes continuous is obtained as 1.8 nm and 2.2 nm for Mo deposited at substrate temperatures 300 K and 100 K, respectively. An amorphous-to- crystalline transition is also observed, and discussed.
Chapter 5 covers the detailed study of the surfaces and interfaces studies in three different ML structures viz., Mo/Si, Fe/B4C and Mo/Y, meant for the polarizer application in the wavelength range of 67 Å to 160 Å. Multilayers with varying periodicity, varying number of layer pairs, and different ratios of high-Z layer thickness to the period, were fabricated using the electron beam system. Initially, a brief overview of the design aspects of ML structures is given, along with the theoretically calculated reflectivity at Brewster’s angle from the best material combinations. In Mo/Si MLs, the interlayer formed at the interfaces due to interdiffusion of the two elements is asymmetric in thickness, i.e., Mo-on-Si interlayer is thicker than the Si-on-Mo interlayer. To take account of these interlayers in XRR data fitting, a four layer model is considered. The effect of interlayers on reflectivity pattern was studied using simulations, and differences with respect to roughness are also discussed. The mechanism of formation of asymmetric interlayers is also discussed. The interlayer composition has determined using depth-graded XPS. The results reveal the formation of the MoSi2 composition at both the interfaces. The experimental results agree well with theoretical calculations based on solid-state amorphization reaction, which is a result of large heat of mixing. The effective heat of formation model reveals the formation of MoSi2 as the first phase. The soft x-ray reflectivity performance of the Mo/Si ML structure at Brewster’s angle is tested using Indus-1 synchrotron radiation (SR).
Using XRR and GIXFR, a study of the surfaces and interfaces of bilayers of B4C-on-Fe and Fe-on- B4C, and tri-layers of Fe-B4C-Fe was carried out, with a systematic variation of Fe and B4C layer thicknesses. A sharp interface was observed in Fe-on-B4C, whereas a low density (w.r.t. Fe) interlayer is observed at the B4C-on-Fe interface. The interlayer properties fluctuates w.r.t. the bottom Fe layer thickness and is independent of the top B4C layer thickness. The nature of fluctuations has been discussed in detail. A study of the surfaces and interfaces of Fe/B4C MLs is described. Finally, a study of the surfaces and interfaces of bilayers, tri-layers, and MLs of the Mo/Y system is discussed in detail.
Chapter 6 describes the application of soft x-ray resonant reflectivity for the characterization of low-Z thin films and interfaces in multilayer structures. Initially, a discussion of the energy dependence of atomic scattering factors and hence of optical constants is provided with simulations, with emphasis on the atomic absorption edge. Then, a brief overview of synchrotron radiation, with particular emphasis on the parameters of the Indus-1 synchrotron source is given. The possibilities of determining the composition of the buried interlayer with sub-nanometer scale sensitivity using soft x-ray resonant reflectivity are discussed. The methodology has been applied to study the Mo/Si interface both by simulations and by experiments on the Indus-1 SR, by tuning the photon energy to the Si L-absorption edge. Finally, direct evidence of elemental specificity of soft x-ray resonant reflectivity through the observation of the effect of anomalous optical constants on the reflectivity pattern is discussed. We demonstrate the method through simulations and experiments on the B4C material in B4C thin films and Fe/ B4C bi-layers, using Indus-1 SR tuned to the boron Kedge.
Chapter 7 summarizes the main findings of the present work, and provides an outlook for further investigations in the field.
|
9 |
Growth of Semiconductor and Semiconducting Oxides Nanowires by Vacuum Evaporation MethodsRakesh Kumar, Rajaboina January 2013 (has links) (PDF)
Recently, there has been a growing interest in semiconductor and semiconducting oxide nanowires for applications in electronics, energy conversion, energy storage and optoelectronic devices such as field effect transistors, solar cells, Li- ion batteries, gas sensors, light emitting diodes, field emission displays etc. Semiconductor and semiconducting oxide nanowires have been synthesized widely by different vapor transport methods. However, conditions like high growth temperature, low vacuum, carrier gases for the growth of nanowires, limit the applicability of the processes for the growth of nanowires on a large scale for different applications.
In this thesis work, studies have been made on the growth of semiconductor and semiconducting oxide nanowires at a relatively lower substrate temperature (< 500 °C), in a high vacuum (1× 10-5 mbar), without employing any carrier gas, by electron beam and resistive thermal evaporation processes. The morphology, microstructure, and composition of the nanowires have been investigated using analytical techniques such as SEM, EDX, XRD, XPS, and TEM. The optical properties of the films such as reflectance, transmittance in the UV-visible and near IR region were studied using a spectrophotometer.
Germanium nanowires were grown at a relatively lower substrate temperature of 380-450 °C on Si substrates by electron beam evaporation (EBE) process using a Au-assisted Vapor-Liquid-Solid mechanism. High purity Ge was evaporated in a high vacuum of 1× 10-5 mbar, and gold catalyst coated substrates maintained at a temperature of 380-450 °C resulted in the growth of germanium nanowires via Au-catalyzed VLS growth. The influence of deposition parameters such as the growth temperature, Ge evaporation rate, growth duration, and gold catalyst layer thickness has been investigated. The structural, morphological and compositional studies have shown that the grown nanowires were single-crystalline in nature and free from impurities. The growth mechanism of Germanium nanowires by EBE has been discussed. Studies were also made on Silicon nanowire growth with Indium and Bismuth as catalysts by electron beam evaporation. For the first time, silicon nanowires were grown with alternative catalysts by the e-beam evaporation method. The use of alternative catalysts such as Indium and Bismuth results in the decrease of nanowire growth temperature compared to Au catalyzed Si nanowire growth. The doping of the silicon nanowires is possible with an alternative catalyst.
The second part of the thesis concerns the growth of oxide semiconductors such as SnO2, Sn doped Indium oxide (ITO) nanowires by the electron beam evaporation method. For the first time, SnO2 nanowires were grown with a Au-assisted VLS mechanism by the electron beam evaporation method at a low substrate temperature of 450 °C. SEM, XRD, XPS, TEM, EDS studies on the grown nanowires showed that they were single crystalline in nature and free of impurities. The influence of deposition parameters such as the growth temperature, oxygen partial pressure, evaporation rate of Sn, and the growth duration has been investigated. Studies were also done on the application of SnO2 nanowire films for UV light detection. ITO nanowires were grown via a self-catalytic VLS growth mechanism by electron beam evaporation without the use of any catalyst at a low substrate temperature of 250-400 °C. The influence of deposition parameters such as the growth temperature, oxygen partial pressure, evaporation rate of ITO, and growth duration has been investigated. Preliminary studies have been done on the application of ITO nanowire films for transparent conducting coatings as well as for antireflection coatings.
The final part of the work is on the Au-assisted and self catalytic growth of SnO2 and In2O3 nanowires on Si substrates by resistive thermal evaporation. For the first time, SnO2 nanowires were grown with a Au-assisted VLS mechanism by the resistive thermal evaporation method at a low substrate temperature of 450 °C. SEM, XRD, XPS, TEM, and EDS studies on the grown nanowires showed that they were single crystalline in nature and free of impurities. Studies were also made on the application of SnO2 nanowire films for methanol sensing.
The self-catalytic growth of SnO2 and In2O3 nanowires were deposited in high vacuum (5×10-5 mbar) by thermal evaporation using a modified evaporation source and a substrate arrangement. With this arrangement, branched SnO2 and In2O3 nanowires were grown on a Si substrate. The influence of deposition parameters such as the applied current to the evaporation boat, and oxygen partial pressure has been investigated. The growth mechanism behind the formation of the branched nanowires as well as nanowires has been explained on the basis of a self-catalytic vapor-liquid-solid growth mechanism.
The highlight of this thesis work is employing e-beam evaporation and resistive thermal evaporation methods for nanowire growth at low substrate temperatures of ~ 300-500 °C. The grown nanowires were tested for applications such as gas sensing, transparent conducting coatings, UV light detection and antireflection coating etc.
The thesis is divided into nine chapters and each of its content is briefly described below.
Chapter 1
In this chapter, a brief introduction is given on nanomaterials and their applications. This chapter also gives an overview of the different techniques and different growth mechanisms used for nanowires growth. A brief overview of the applications of semiconductors and semiconductor oxide nanowires synthesized is also presented.
Chapter 2
Different experimental techniques employed for the growth of Si, Ge, SnO2, In2O3, ITO nanowires have been described in detail in this chapter. Further, the details of the different techniques employed for the characterization of the grown nanowires were also presented.
Chapter 3
In this chapter, studies on the growth of Germanium nanowires by electron beam evaporation (EBE) are given. The influence of deposition parameters such as growth temperature, evaporation rate of germanium, growth duration, and catalyst layer thickness was investigated. The morphology, structure, and composition of the nanowires were investigated by XRD, SEM, and TEM. The VLS growth mechanism has been discussed for the formation of the germanium nanowires by EBE using Au as a catalyst.
Chapter 4
This chapter discusses the growth of Si nanowires with Indium and Bismuth as an alternate to Au-catalyst by electron beam evaporation. The influence of deposition parameters such as growth temperature, Si evaporation rate, growth duration, and catalyst layer thickness has been investigated. The grown nanowires were characterized using XRD, SEM, TEM and HRTEM. The Silicon nanowires growth mechanism has been discussed.
Chapter 5
This chapter discusses the Au-catalyzed VLS growth of SnO2 nanowires by the electron beam evaporation method as well as Antimony doped SnO2 nanowires by co-evaporation method at a low substrate temperature of 450 °C. The grown nanowires were characterized using XRD, SEM, TEM, STEM, Elemental mapping, HRTEM, and XPS. The effect of deposition parameters such as oxygen partial pressure, growth temperature, catalyst layer thickness, evaporation rate of Sn, and the growth duration of nanowires were investigated. The SnO2 nanowires growth mechanism has been explained. Preliminary studies were made on the possible use of pure SnO2 and doped SnO2 nanowire films for UV light detection. SnO2 nanowire growth on different substrates such as stainless steel foil (SS), carbon nanosheets films, and graphene oxide films were studied. SnO2 nanowire growth on different substrates, especially SS foil will be useful for Li-ion battery applications.
Chapter 6
This chapter discusses the self catalyzed VLS growth of Sn doped Indium oxide (ITO) nanowires by the electron beam evaporation method at a low temperature of 250-400 °C. The grown nanowires were characterized using XRD, SEM, TEM, STEM, HRTEM, and XPS. The effect of deposition parameters such as oxygen partial pressure, growth temperature, evaporation rate of ITO, and the growth duration of the nanowires were investigated. Preliminary studies were also made on the possible use of self-catalyzed ITO nanowire films for transparent conducting oxides and antireflection coatings. ITO nanowire growth on different and large area substrates such as stainless steel foil (SS), and Glass was done successfully. ITO nanowire growth on different substrates, especially large area glass substrates will be useful for optoelectronic devices.
Chapter 7
In this chapter, studies on the growth of SnO2 nanowires by a cost-effective resistive thermal evaporation method at a relatively lower substrate temperature of 450 °C are presented. The grown nanowires were characterized using XRD, SEM, TEM, HRTEM, and XPS. Preliminary studies were done on the possible use of SnO2 nanowire films for methanol sensing.
Chapter 8
This chapter discusses the self-catalytic growth of SnO2 and In2O3 nanowires by resistive thermal evaporation. The nanowires of SnO2 and In2O3 were grown at low temperatures by resistive thermal evaporation using a modified source and substrate arrangement. In this arrangement, branched SnO2 nanowires, and In2O3 nanowires growth was observed. The grown nanowires were characterized using XRD, SEM, TEM, HRTEM, and XPS. The possible growth mechanism for branched nanowires growth has been explained.
Chapter 9
The significant results obtained in the present thesis work have been summarized in this chapter.
|
10 |
Wachstumsanalyse amorpher dicker Schichten und Schichtsysteme / Growth analysis of thick amorphous films and multilayersStreng, Christoph 18 May 2004 (has links)
No description available.
|
Page generated in 0.1201 seconds