• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 34
  • 28
  • 27
  • 24
  • 13
  • 13
  • 13
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Ion implantation in quantum Hall systems

Avesque, Sophie. January 2008 (has links)
No description available.
22

The Calculation of Corrections to the Random Phase Approximation for an Interacting Electron Gas in the Ground State

Geldart, Donald James Wallace 01 1900 (has links)
<p> This work is concerned with the calculation by means of many-particle perturbation theory of the lowest order corrections to the Random Phase Approximation (RPA) description of an interacting electron gas in its ground state. Expressions in terms of the dynamically screened coulomb interaction are obtained for the electron proper self-energy, the electron momentum distribution function, and the screening function. Techniques, which reduce computational labour to a manageable level, are developed for the practical evaluation of the required corrections. The numerical results are not conclusive but they indicate that when all corrections of the same order (in the screened interaction) are included, the expansion converges sufficiently rapidly that the results are valid in the range of metallic densities.</p> / Thesis / Doctor of Philosophy (PhD)
23

Applications of the density-functional formalism to inhomogeneous multiparticle systems /

Andrew, Stefan Thomas January 1980 (has links)
No description available.
24

Application of quantum Monte Carlo methods to homogeneous electron and electron-hole systems

Spink, Graham George January 2017 (has links)
The properties of the macroscopic world around us, and of which we are a part, are largely determined by the low energy, collective behaviour of many interacting particles, including the nuclei and, especially, the electrons present. Although the fundamental laws governing the behaviour of these many-body systems are believed to be known in principle, the practical solution of the equations of quantum mechanics remains a challenging area of research. This thesis is concerned with the application of quantum Monte Carlo methods to two model systems: the spin-polarised homogeneous electron gas, and a hole-doped electron gas. Electronic structure theory is briefly reviewed before discussing in more detail the quantum Monte Carlo methods used in this thesis. A study of the three-dimensional spin-polarised homogeneous electron gas (HEG) is then reported, where the relatively new technique of twist averaging is investigated in detail and accurate energies and pair correlation functions are obtained over densities $r_s = 0.5 – 20$ a.u. and the full range of spin-polarisation, allowing comparison with the Perdew-Zunger interpolation scheme used in local spin density approximation exchange-correlation functionals. Following this, an impurity is added to the electron gas in the form of a positively charged hole, and the interaction is studied. Relaxation energies, pair correlation functions and momentum densities are reported. Trion formation is observed over a range of carrier densities and electron-hole mass ratios in agreement with experiment. Isolated trions are also studied, where the diffusion Monte Carlo method is exact. Methodological innovations developed while carrying out this work are discussed, including a variance reduction technique for twist-averaged calculations and a new trial wave function for impurity-in-HEG calculations.
25

Electron Transport Dynamics in Semiconductor Heterostructure Devices

Pilgrim, Ian 17 October 2014 (has links)
Modern semiconductor fabrication techniques allow for the fabrication of semiconductor heterostructures which host electron transport with a minimum of scattering sites. In such devices, electrons populate a two-dimensional electron gas (2DEG) in which electrons propagate in exactly two dimensions, and may be further confined by potential barriers to form electron billiards. At sub-Kelvin temperatures, electron trajectories are determined largely by reflections from the billiard walls, while net conduction through the device depends on quantum mechanical wave interference. Measurements of magnetoconductance fluctuations (MCF) serve as a probe of dynamics within the electron billiard. Many prior studies have utilized heterostructures employing the modulation doping architecture, in which the 2DEG is spatially removed from the donor atoms to minimize electron scattering. Theoretical studies have claimed that MCF will be fractal when the confinement potential defining the billiard is soft-walled, regardless of the presence of smooth potentials within the billiard such as those introduced by remote ionized donors. The small-angle scattering sites resulting from these potentials are often disregarded as negligible; we use MCF measurements to investigate such claims. To probe the effect of remote ionized donor scattering on the phase space in electron billiards, we compare MCF measured on billiards in a modulation-doped heterostructure to those measured on billiards in an undoped heterostructure, in which this potential landscape is believed to be absent. Fractal studies are performed on these MCF traces, and we find that MCF measured on the undoped billiards do not exhibit measurably different fractal characteristics than those measured on the modulation-doped billiards. Having confirmed that the potential landscapes in modulation-doped heterostructures do not affect the electron phase space, we then investigate the effect of these impurities on the distribution of electron trajectories through the billiards. By employing thermal cycling experiments, we demonstrate that this distribution is highly sensitive to the precise potential landscape within the billiard, suggesting that modulation-doped heterostructures do not support fully ballistic electron transport. We compare our MCF correlation data with the dynamics of charge transfer within heterostructure systems to make qualitative conclusions regarding these dynamics.
26

Study of a non-interacting, nonuniform electron gas in two dimensions

Koivisto, Michael William 08 November 2007 (has links)
The non-interacting, nonuniform electron gas exhibits simplifications in two dimensions, that are of particular interest in the application of density functional theory. The results of linear response theory for an attractive impurity in a two-dimensional gas have been shown to be surprisingly accurate even though there are bound states, and were shown to be exact in the high density limit (Zaremba et al. Phys. Rev. B, 71:125323, 2005 and Zaremba et al. Phys. Rev. Lett., 90(4):046801, 2003). The density resulting from linear response theory and the Thomas-Fermi approximation coincide in the high density limit. As an alternative to linear response theory, the Kirzhnits gradient expansion gives corrections to Thomas-Fermi in gradients of the potential. In two dimensions, all of the gradient corrections vanish at zero temperature, which is a new result presented in this work. We have performed numerical calculations which show that while Thomas-Fermi appears to be a surprisingly accurate approximation in two dimensions, it is not exact. The differences between two and three dimensions that lead to the vanishing of the gradient corrections, however, are of great interest since these may lead to better understanding and simplifications of the corresponding three-dimensional problem. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2007-11-07 09:47:00.316
27

Electron-phonon interactions in low dimensional structures

Leadley, David Romwald January 1989 (has links)
Transport properties of the two-dimensional electron gas (2DEG) in high magnetic fields are used to investigate scattering processes affecting the resistivity of GaAs-GaAlAs and GaInAs-InP heterojunctions and quantum wells: especially coupling of electrons to acoustic and optic phonons; and transitions between electric subbands. The experiments fall into two groups: A systematic study of magnetophonon resonance (MPR) between 30K and 300K. Resonance positions indicate a coupling substantially below the LO phonon energy, expected from 3D measurements. GaAs-GaAlAs hetero junctions show amplitudes varying smoothly with electron density (n<sub>s</sub>) and closely related to the 4K mobility. On rotation in magnetic field they decrease rapidly as the resonance position returns to the LO value. In modulation doped structures the damping factor is determined by remote impurity scattering. As n<sub>s</sub> is increased in GaInAs-InP the coupling frequency decreases dramatically from the GaAs-like LO at 272cm<sup>-1</sup> to the InAs-like TO at 226cm<sup>-1</sup>. At higher electric fields the 'normal' MPR maxima invert, starting at low magnetic fields, to form 'hot electron' MPR minima, with maximum amplitude at ~60K. This is the first direct observation of HEMPR in 2D and is explained in a diffusion picture. At lower electric fields, additional resonances are identified with resonant cooling by inter-subband scattering. Comparisons are made with calculations and explanations sought including consideration of interface phonons; coupled plasmon-phonon modes; and shifts of the resonance positions due to the shape of the density of states. Low temperature magnetoresistance measurements in GaAs-GaAlAs heterojunctions with more than one occupied electric subband. Shubnikov-de Haas oscillations in perpendicular magnetic fields contain non-additive terms at electron temperatures > 2K where acoustic phonon mediated inter-subband scattering is comparable to intra-subband scattering. Subband separations and greatly enhanced g-factors [largest for electrons in the upper subband ] are deduced from the oscillations. Damping of the oscillations in field, gives values for quantum lifetimes (τ<sub>s</sub>), much smaller than τ<sub>tʼ</sub>, deduced from mobility. With two subbands occupied τ<sub>s</sub> is always largest for the upper subband, while relative sizes of τ<sub>t</sub> depend on sample quality. Study of electron energy loss rates, from thermal damping of the oscillations, shows enhancement in the region kT<sub>e</sub> ~ ħω<sub>cʼ</sub>, which is evidence for cyclotron phonon emission. Depopulating subbands in parallel fields causes the resistance to drop, by up to 60%, due to suppression of inter-subband scattering. Systematic studies show this scattering rate is independent of n<sub>s</sub>.
28

A theoretical study of strongly interacting superfluids and superconductors

Sensarma, Rajdeep. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 187-192).
29

Role of electron-electron interactions in chiral 2DEGs

Barlas, Yafis. January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references and index.
30

Charge relaxation, current distribution, and breakdown of the quantum Hall effect /

Tsemekhman, Vadim, January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [108]-114).

Page generated in 0.0467 seconds