• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 19
  • 17
  • 7
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 118
  • 118
  • 41
  • 37
  • 26
  • 25
  • 25
  • 22
  • 22
  • 22
  • 22
  • 18
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Sondando estruturas cristalinas e interações magnéticas em perovskitas com espectroscopia Raman / Probing crystal structures and magnetic interactions in perovskites using Raman spectroscopy

Kaneko, Ulisses Ferreira, 1984- 20 August 2018 (has links)
Orientador: Eduardo Granado Monteiro da Silva / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-20T17:01:24Z (GMT). No. of bitstreams: 1 Kaneko_UlissesFerreira_M.pdf: 2619088 bytes, checksum: c36f7ad5b21c5415a6efa7e4b72e4bb3 (MD5) Previous issue date: 2012 / Resumo: Essa dissertação de Mestrado descreve medidas de Espectroscopia Raman realizadas em dois sistemas de perovskitas, Sr2CrReO6 e Ba1-xLaxTi0,5Mn0,5O3. Na perovskita Sr2CrReO6 dupla foram feitas medidas em um intervalo de temperaturas entre 30 K e 700 K. Foi observado um endurecimento anômalo e recorde do modo de respiração dos octaedros de oxigênio sobre os metais de transição abaixo da temperatura de ordenamento ferrimagnético dos spins de Cr e Re, Tc~600K. Tal fenômeno é explicado em termos de uma nova excitação coletiva à qual atribuímos o nome de ¿spin-elétron-fônon¿. No sistema Ba1-xLaxTi0,5Mn0,5O3 é feita uma série de medidas para x=0.0, 0.2, 0.3, 0.4 e 0.5. Para cada valor de x foi variada a temperatura de 30 K até 300 K e o mostramos que a mudança de temperatura não induz nenhuma transição de fase estrutural. No entanto, o espectro Raman mostra uma evolução em função de x que é interpretada como uma transição de fase causada por um aumento da desordem ocupacional nos sítios de Ti e Mn induzida pela dopagem de La / Abstract: This Master¿s thesis describes Raman spectroscopy measurements performed on two perovskitas systems, Sr2CrReO6 and Ba1-xLaxTi0,5Mn0,5O3. In the double perovskite Sr2CrReO6 Raman spectra were measured as a function of temperature in the range from 30 K to 700 K. A record-high anomalous hardening at the frequency of breathing mode of the oxygen octaedra over the transition-metals ions was observed below the ferrimagnetic ordering temperature of the Cr and Re spins. This phenomenon is explained in terms of a new collective excitation which we term \\\"spin-electronphonon\\\". In the system Ba1-xLaxTi0,5Mn0,5O3 a series of Raman spectra was measured for x = 0.0; 0.2; 0.3; 0.4 and 0.5. For each composition the temperature was varied from 30 K to 300 K and we showed that, at least in the studied range temperature variation does not induce any structural transition. However, the Raman spectrum shows an evolution with x which is interpreted as a phase transition caused by increase in occupational disorder in the Ti and Mn sites induced by La dopping / Mestrado / Física / Mestre em Física
52

Etude expérimentale et théorique des fluctuations thermiques quantiques des noyaux par spectroscopies d'absorption X et RMN / Experimental and ab initio study of phonon effects in X-ray absorption near-edge structure and nuclear magnetic resonance spectroscopies

Nemausat, Ruidy 05 February 2016 (has links)
Le but de cette thèse est de décrire l'impact des fluctuations thermiques quantiques sur les spectres XANES et RMN du solide, à l'aide d'une étude conjointe expérimentale et théorique. Ce projet comporte deux volets. D'une part, il s'agit d'acquérir des données expérimentales de très bonne qualité, afin d'observer et comprendre l'influence des vibrations quantiques dans les oxydes d'éléments légers. D'autre part, un modèle théorique est mis en place afin de reproduire les effets observés expérimentalement et décrire leur origine d'un point de vue fondamental. L'approche théorique développée est fondée sur la théorie de la fonctionnelle de la densité. Dans le cadre de l'approximation de Born-Oppenheimer et de l'approximation quasi-harmonique, les fluctuations thermiques de nature quantiques sont modélisées en générant des configurations atomiques obéissant à la statistique quantique à température finie. Les spectres XANES et paramètres RMN sont, par la suite, calculés dans ces configurations et les résultats moyens sont comparés aux données spectroscopiques à température finie. Cette approche a été validée par une étude menée dans une série d'oxydes d'éléments légers, où les résultats se sont avérés être en excellent accord avec les données expérimentales originales que nous avons enregistrées. En outre, il est montré que les fluctuations quantiques des noyaux ne jouent pas le même rôle selon la symétrie locale du site atomique sondé. / In this thesis the impact of quantum thermal fluctuations on XANES and solid-state NMR spectra is described using an experimental and theoretical joint study. This project has two components. First, high-quality experimental data are acquired in order to observe and understand the influence of quantum vibrations in light-elements oxides. Second, a theoretical model is set up to reproduce the effects observed experimentally and describe their origin from a fundamental point of view. The developed theoretical approach is based on the density-functional theory. Within the Born-Oppenheimer and quasiharmonic approximations, the quantum thermal fluctuations of nuclei are modeled by generating atomic configurations obeying quantum statistics at finite temperature. The XANES spectra and NMR parameters are subsequently calculated in these configurations and the average results are compared with spectroscopic data at finite temperature. This approach has been validated by a joint theoretical-experimental study conducted in a series of light-element oxides, where the results were found to be in excellent agreement with the original experimental data. In addition, it is shown that the impact of the quantum fluctuations of the nuclei is influenced by the local symmetry of the probed atomic site.
53

ATOMISTIC MODELING OF COUPLED ELECTRON-PHONON TRANSPORT IN NANOSTRUCTURES

Rashid, Mohammad Zunaidur 01 September 2021 (has links)
Electronics industry has been developing at a tremendous rate for last five decades and currently is one of the biggest industries in the world. The key to the rapid growth of electronics industry is innovation that made possible the constant scaling of transistors with reduced cost and improved performance. Scaling transistors were simpler at the beginning, but currently as the gate length of transistors has reached few nanometers, different short channel effects have emerged and power density of transistors has also increased drastically, which made further scaling much more challenging. To study electro-thermal transport in these reduced dimensionality devices, continuum models are no longer sufficient. In this work, the electrical and thermal transport properties have been modeled by solving Boltzmann Transport Equation (BTE) for electrons and phonons, respectively, using the Monte Carlo (MC) technique. To solve BTE for the phonons, a coupled Molecular Mechanics-Monte Carlo approach is employed where phonon band-structure is obtained using the atomistic modified Valence Force Field (VFF) model and is coupled with a Monte Carlo Phonon Transport kernel which solves the BTE for phonons. The phonon-phonon scattering is modeled in relaxation time approximation (RTA) using Holland’s formalism. Diffusive boundary scattering for phonons has been modeled using the Beckmann-Kirchhoff (B-K) surface roughness scattering model taking into account the effects of phonon wavelength, incident angles and degree of surface roughness. The effect of rough surface on longitudinal acoustic (LA) and transverse acoustic (TA) phonon branches has been studied with the help of the B-K model and it has been found that, at elevated temperatures, there is less backscattering to the LA branch due to rough surface. Effort has been made then to couple the developed phonon Monte Carlo transport simulator with an electron Monte Carlo transport simulator to study the origin and effects of self-heating in a nanoscale field-effect transistor (FET). In contrast to the widely used continuum model, where Fourier heat diffusion equation is usually solved to describe the thermal transport, the simulator developed in this dissertation treats both the electrons and the phonons at the particle level. Acoustic and intervalley g and f type electron-phonon scattering mechanisms are considered and the resulting local temperature modification has been used to bridge the electron and phonon transport paths. Phonon transport at the oxide-silicon interface has been modeled using the Diffuse Mismatch (DM) model, whereas, the phonons in the oxide have been described using the Debye model and temperature and frequency dependent relaxation time. The simulator is then benchmarked and used to study the electron-phonon transport processes in a FinFET device with a gate length of 18 nm, channel width of 4 nm, and a fin height of 8 nm. Preliminary results show that there can be a current degradation of as high as ~9.56% due to self-heating effect. Also, temperature in the entire channel region could rise due to self-heating. The maximum temperature rise in the channel region is found to be ~30K.
54

Intrinsic vibrational angular momentum driven by non-adiabatic effects in non-collinear magnetic systems

Bistoni, Oliviero 27 January 2022 (has links)
In absence of external fields, vibrational modes of periodic systems are usually considered as linearly polarized and, as such, they do not carry angular momentum. Our work proves that non-adiabatic effects due to the electron-phonon coupling are time-reversal symmetry breaking interactions for the vibrational field in systems with non-collinear magnetism and large spin-orbit coupling. Since in these systems the deformation potential matrix elements are necessarily complex, a nonzero synthetic gauge field (Berry curvature) arises in the dynamic equations of the ionic motion. As a result, phonon modes are elliptically polarized in the non-adiabatic framework and intrinsic vibrational angular momenta occur even for non-degenerate modes and without external probes. These results are validated by performing fully relativistic ab-initio calculations on two insulating platinum clusters and a metallic manganese compound, with non-collinear magnetism. In both cases, non-adiabatic vibrational modes carry sizeable angular momenta comparable to the orbital electronic ones in itinerant ferromagnets.
55

Anharmonicity and Electron-Phonon Interactions in Periodic Systems

Shih, Petra January 2024 (has links)
Anharmonic lattice dynamics and electron-phonon interactions are crucial to many intriguing physical phenomena in condensed matter physics. In my thesis, I develop theoretical methods and use them to characterize physical properties of model systems and realistic novel materials. First, I introduce vibrational dynamical mean-field theory on models of anharmonic phonons using various impurity solvers, and describe the theoretical extensions to treat non-local interactions. Second, I characterize phononic and excitonic ground state properties of the superatomic semiconductor, Re₆Se₈Cl₂, which exhibits quasi-ballistic exciton dynamics at room temperature. We attribute this behavior to the formation of polarons due to coupling with acoustic phonons and parameterize a Hamiltonian to study the ground state properties. Finally, I introduce a method to calculate the Green’s function that characterizes the equilibrium dynamical properties of polarons. I demonstrate its performance on the Holstein model at finite temperature, and show its applications to systems with general coupling, electron-electron interaction, and anharmonicity.
56

Dynamique thermique et vibrationnelle de nanoparticules d'or et Au@SiO2 en régime femtoseconde : effet de la nanostructuration

Calbris, Gaëtan 17 December 2010 (has links)
Généralement, un bon conducteur thermique est aussi bon conducteur électrique (Wiedemann-Franz). Pour de nombreuses applications, il est impératif de pouvoir découpler ces deux propriétés. La nanostructuration permet de modeler les propriétés thermiques sans affecter les propriétés électriques. Lors de cette thèse, nous nous sommes intéressés à la synthèse et à la caractérisation d'un matériau initialement isolant dans lequel est insérée une assemblée de nanoparticules métalliques. Le nanocomposite élaboré est constitué de nanoparticules cœur@écorce (Au@SiO2 ou Au@Thiol) structurées en opale par méthode de type "Langmuir". Lorsque la concentration en nanoparticules est suffisante, une amplification du transfert thermique dans le nanocomposite est prédite par certains auteurs. Le couplage par rayonnement en champ proche, majoritairement plasmonique, constitue un nouveau mécanisme de transport de chaleur. Dans ce travail, nous avons étudié le transfert d'énergie au sein de nanoparticules isolées et sous forme de réseau. Dans un premier temps, nous présentons les techniques de synthèse chimique mises en œuvre pour la conception des nanocomposites et détaillons leurs propriétés optiques. Puis, nous présentons la conception du banc de mesure, il s'agit d'un banc d'imagerie pompe-sonde femtoseconde accordable en longueur d'onde permettant des études en réflexion et transmission. Les expériences que nous avons menées nous ont permis d'étudier la dynamique thermique électronique de nanoparticules d'or pour différents environnements et de mettre en évidence expérimentalement des modes de vibration acoustiques de systèmes cœur-écorce lorsqu'ils sont soumis à une excitation laser femtoseconde. / Typically, a good thermal conductor is also a good electrical conductor (Wiedemann-Franz). For several applications, it is imperative to be able to decouple these two properties. Nanostructuration allows for the modification of thermal properties without affecting electrical properties. This thesis is concerned with the synthesis and characterization of nanocomposites made from an insulating matrix impregnated with metallic nanoparticles. The elaborated nanocomposite is assembled from core@shell nanoparticles (Au@SiO2 or Au@Thiol) structured in an artificial opal by the "Langmuir" method. When the nanoparticle concentration is sufficiently high, certain authors predict an amplification of thermal transport in the nanocomposite. The radiative near-field coupling, largely plasmonic, constitutes a new mechanism for heat transport. In this work, we have studied the energy transfer within isolated nanoparticles and in arrays. First, we present chemical synthesis techniques used for the nanocomposites conception and detailed their optical properties. Then, we present the conception of the experimental set-up; a multicolor femtosecond pump-probe Imaging system permitting studies in reflection or transmission. These experiments permit us to study the electronic temperature dynamics of gold nanoparticles in different environments and to measure core@shell system's acoustic vibrational modes femtosecond laser excitation.
57

Effet des corrélations locales sur le couplage électron-phonon dans le LSCO en DFT+DMFT

Groulx, Julien 07 1900 (has links)
No description available.
58

Band to Mott transition in the infinite dimensional Holstein model

Hague, James P. January 2001 (has links)
No description available.
59

A phonon study of semiconductor tunnelling devices

Cavill, Stuart Alan January 2000 (has links)
No description available.
60

Investigation of resonant Raman scattering in type II GaAs/A1As superlattices

Choi, Hyun-jin January 2001 (has links)
No description available.

Page generated in 0.0472 seconds