• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 11
  • 2
  • 2
  • 1
  • Tagged with
  • 76
  • 76
  • 23
  • 14
  • 14
  • 13
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A study of surface-related low-frequency noise in MOSFETs and metal films

王曦, Wong, Hei. January 1990 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
32

THE SOLUTION OF ILL-POSED SYSTEMS OF LINEAR EQUATIONS IN THE PRESENCE OF NOISE, WITH APPLICATIONS IN GEOTOMOGRAPHY.

Lyon, Charles Crosby. January 1984 (has links)
No description available.
33

Detection of frequency-hopped signals embedded in interference waveforms

Brown, Christopher K. 06 1900 (has links)
Many military communications systems utilize frequency-hopped spread spectrum waveforms to protect against jamming and enemy detection. These waveforms may be subjected not only to intentional jamming but may also be unintentionally jammed by other communications signals. While some systems can overcome inband interference with more signal power, covert systems may be limited to small amounts of transmitted power. The objective of this thesis was to investigate a method for resolving a frequency-hopped signal embedded in interference waveforms. With exponential averaging in the frequency domain, the spectra of the interfering signals can be estimated as long as they are present over a period longer than that of the frequency-hopped signal. Certain FFT sizes and weights are more beneficial to achieving this estimate than others. The interference estimate can be used to extract the desired frequency-hopped signal through spectral division of the received signal with the estimate. This technique is designated as noise-normalization. Simulations in MATLAB demonstrate the use of the technique and show how the desired signal can be resolved.
34

CMOS RF low noise amplifier with high ESD immunity.

January 2004 (has links)
Tang Siu Kei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 107-111). / Abstracts in English and Chinese. / Acknowledgements --- p.ii / Abstract --- p.iii / List of Figures --- p.xi / List of Tables --- p.xvi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview of Electrostatic Discharge --- p.1 / Chapter 1.1.1 --- Classification of Electrostatic Discharge Models --- p.1 / Chapter 1.2 --- Electrostatic Discharge in CMOS RF Circuits --- p.4 / Chapter 1.3 --- Research Goal and Contribution --- p.6 / Chapter 1.4 --- Thesis Outline --- p.6 / Chapter Chapter 2 --- Performance Parameters of Amplifier --- p.8 / Chapter 2.1 --- Amplifier Gain --- p.8 / Chapter 2.2 --- Noise Factor --- p.9 / Chapter 2.3 --- Linearity --- p.11 / Chapter 2.3.1 --- 1-dB Compression Point --- p.13 / Chapter 2.3.2 --- Third-Order Intercept Point --- p.14 / Chapter 2.4 --- Return Loss --- p.16 / Chapter 2.5 --- Power Consumption --- p.18 / Chapter 2.6 --- HBM ESD Withstand Voltage --- p.19 / Chapter Chapter 3 --- ESD Protection Methodology for Low Noise Amplifier --- p.21 / Chapter 3.1 --- Dual-Diode Circuitry --- p.22 / Chapter 3.1.1 --- Working Principle --- p.22 / Chapter 3.1.2 --- Drawbacks --- p.24 / Chapter 3.2 --- Shunt-Inductor Method --- p.25 / Chapter 3.2.1 --- Working Principle --- p.25 / Chapter 3.2.2 --- Drawbacks --- p.27 / Chapter 3.3 --- Common-Gate Input Stage Method --- p.28 / Chapter 3.3.1 --- Built-in ESD Protecting Mechanism --- p.29 / Chapter 3.3.2 --- Competitiveness --- p.31 / Chapter Chapter 4 --- Design Theory of Low Noise Amplifier --- p.32 / Chapter 4.1 --- Small-Signal Modeling --- p.33 / Chapter 4.2 --- Method of Input Termination --- p.33 / Chapter 4.2.1 --- Resistive Termination --- p.34 / Chapter 4.2.2 --- Shunt-Series Feedback --- p.34 / Chapter 4.2.3 --- l/gm Termination --- p.35 / Chapter 4.2.4 --- Inductive Source Degeneration --- p.36 / Chapter 4.3 --- Method of Gain Enhancement --- p.38 / Chapter 4.3.1 --- Tuned Amplifier --- p.38 / Chapter 4.3.2 --- Multistage Amplifier --- p.40 / Chapter 4.4 --- Improvement of Reverse Isolation --- p.41 / Chapter 4.4.1 --- Common-Gate Amplifier --- p.41 / Chapter 4.4.2 --- Cascoded Amplifier --- p.42 / Chapter Chapter 5 --- Noise Analysis of Low Noise Amplifier --- p.44 / Chapter 5.1 --- Noise Sources of MOS Transistor --- p.44 / Chapter 5.2 --- Noise Calculation using Noisy Two-Port Network --- p.46 / Chapter 5.3 --- Noise Calculation using Small-Signal Model --- p.49 / Chapter 5.3.1 --- Low Noise Amplifier with Inductive Source Degeneration --- p.49 / Chapter 5.3.2 --- Common-Gate Low Noise Amplifier --- p.52 / Chapter Chapter 6 --- Design of an ESD-protected CMOS Low Noise Amplifier --- p.54 / Chapter 6.1 --- Design of DC Biasing Circuitry --- p.55 / Chapter 6.2 --- Design of Two-Stage Architecture --- p.57 / Chapter 8.3.1 --- Design of Common-Gate Input Stage --- p.57 / Chapter 8.3.2 --- Design of Second-Stage Amplifier --- p.59 / Chapter 6.3 --- Stability Consideration --- p.61 / Chapter 6.4 --- Design of Matching Networks --- p.62 / Chapter 6.4.1 --- Design of Inter-Stage Matching Network --- p.64 / Chapter 6.4.2 --- Design of Input and Output Matching Networks --- p.67 / Chapter Chapter 7 --- Layout Considerations --- p.70 / Chapter 7.1 --- MOS Transistor --- p.70 / Chapter 7.2 --- Capacitor --- p.72 / Chapter 7.3 --- Spiral Inductor --- p.74 / Chapter 7.4 --- Layout of the Proposed Low Noise Amplifier --- p.76 / Chapter 7.5 --- Layout of the Common-Source Low Noise Amplifier --- p.79 / Chapter 7.6 --- Comparison between Schematic and Post-Layout Simulation Results --- p.81 / Chapter Chapter 8 --- Measurement Results --- p.82 / Chapter 8.1 --- Experimental Setup --- p.82 / Chapter 8.1.1 --- Testing Circuit Board --- p.83 / Chapter 8.1.2 --- Experimental Setup for s-parameter --- p.84 / Chapter 8.1.3 --- Experimental Setup for Noise Figure --- p.84 / Chapter 8.1.4 --- Experimental Setup for 1-dB Compression Point --- p.85 / Chapter 8.1.5 --- Experimental Setup for Third-Order Intercept Point --- p.86 / Chapter 8.1.6 --- Setup for HBM ESD Test --- p.87 / Chapter 8.2 --- Measurement Results of the Proposed Low Noise Amplifier --- p.89 / Chapter 8.2.1 --- S-parameter Measurement --- p.90 / Chapter 8.2.2 --- Noise Figure Measurement --- p.91 / Chapter 8.2.3 --- Measurement of 1-dB Compression Point --- p.92 / Chapter 8.2.4 --- Measurement of Third-Order Intercept Point --- p.93 / Chapter 8.2.5 --- HBM ESD Test --- p.94 / Chapter 8.2.6 --- Summary of Measurement Results --- p.95 / Chapter 8.3 --- Measurement Results of the Common-Source Low Noise Amplifier --- p.96 / Chapter 8.3.1 --- s-parameter Measurement --- p.97 / Chapter 8.3.2 --- Noise Figure Measurement --- p.98 / Chapter 8.3.3 --- Measurement of 1-dB Compression Point --- p.99 / Chapter 8.3.4 --- Measurement of Third-Order Intercept Point --- p.100 / Chapter 8.3.5 --- HBM ESD Test --- p.101 / Chapter 8.3.6 --- Summary of Measurement Results --- p.102 / Chapter 8.4 --- Performance Comparison between Different Low Noise Amplifier Designs --- p.103 / Chapter Chapter 9 --- Conclusion and Future Work --- p.105 / Chapter 9.1 --- Conclusion --- p.105 / Chapter 9.2 --- Future Work --- p.106 / References --- p.107 / Author's Publications --- p.112
35

Dark Current RTS-Noise in Silicon Image Sensors

Hendrickson, Benjamin William 12 June 2018 (has links)
Random Telegraph Signal (RTS) noise is a random noise source defined by discrete and metastable changes in the magnitude of a signal. Though observed in a variety of physical processes, RTS is of particular interest to image sensor fabrication where progress in the suppression of other noise sources has elevated its noise contribution to the point of approaching the limiting noise source in scientific applications. There have been two basic physical sources of RTS noise reported in image sensors. The first involves a charge trap in the oxide layer of the source follower in a CMOS image sensor. The capture and emission of a charge changes the conductivity across the source follower, altering the signal level. The second RTS source in image sensors has been reported in CCD and CMOS architectures and involves some metastability in the structure of the device within the light collection area. A methodology is presented for the analysis of RTS noise. Utilizing wavelets, a time-based signal has white noise removed, while RTS transitions are preserved. This allows for the simple extraction of RTS parameters, which provide valuable insight into defects in semiconductor devices. The scheme is used to extract RTS transition amplitudes and time constants from radiation damaged CMOS image sensor pixels. Finally, the generation of ionizing radiation induced RTS centers is investigated and discussed. Surprisingly, the number of RTS centers does not scale linearly with absorbed dose, but instead follows a quadratic dependence. The implications and possible mechanisms behind the generation of these RTS centers are discussed.
36

Comparison of noise performance of capacitive sensing amplifiers

Strait, Thomas J. January 2006 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Department of Electrical and Computer Engineering, 2006. / Includes bibliographical references.
37

Design methodology for low-jitter phase-locked loops

Bhagavatheeswaran, Shanthi, S. 23 February 2001 (has links)
This thesis presents a systematic top-down methodology for simulating a phase-locked loop using a macro model in Verilog-A. The macromodel has been used to evaluate the jitter due to supply noise, thermal noise, and ground bounce. The noise simulation with the behavioral model is roughly 310 times faster (best case) and 125 times faster (worst case). The accuracy of the model depends on the accurate evaluation of the non-linear transfer function from the various noisy nodes to the output. By modeling the noise transfer function of the circuit as closely as possible, 100% accuracy for the behavioral noise simulations compared with the HSPICE noise simulations is obtained. The macro model is written for a charge-pump phase-locked loop, but can be easily extended to other architectures. The simulations are completed using SpectreS in Cadence. The designer can use the model to estimate the jitter at the output of the PLL in a top-down design methodology or cross verify the performance of an existing chip in a bottom-up approach. / Graduation date: 2001
38

A stochastic time-to-digital converter for digital phase-locked loops

Ok, Kerem 28 September 2005 (has links)
Graduation date: 2006 / Digital phase-locked loops (PLLs) have been receiving increasing attention recently due to their ease of integration, scalability and performance comparable to their analog counterparts. In digital PLLs, increased resolution in time-to-digital conversion is desirable for improved noise performance. This work describes the design and simulation of a stochastic time-to-digital converter (STDC) for a digital PLL to attain high resolution. The converter is intended to comprise the fine loop of the phase-frequency detector, whose coarse loop would be comprised of a time-to-digital converter designed using the conventional delay-chain approach. The STDC is designed, simulated and sent for fabrication in a 0.35μm SOI CMOS process. System level simulations in MATLAB are verified by device level simulations in Spectre on circuits extracted from layout. The results support the viability of using the proposed circuit for high resolution time-to-digital conversion.
39

Electronic noise in nanostructures: limitations and sensing applications

Kim, Jong Un 25 April 2007 (has links)
Nanostructures are nanometer scale structures (characteristic length less than 100 nm) such as nanowires, ultra-small junctions, etc. Since nanostructures are less stable, their characteristic volume is much smaller compared to defect sizes and their characteristic length is close to acoustical phonon wavelength. Moreover, because nanostructures include significantly fewer charge carriers than microscale structures, electronic noise in nanostructures is enhanced compared to microscale structures. Additionally, in microprocessors, due to the small gate capacitance and reduced noise margin (due to reduced supply voltage to keep the electrical field at a reasonable level), the electronic noise results in bit errors. On the other hand, the enhanced noise is useful for advanced sensing applications which are called fluctuation-enhanced sensing. In this dissertation, we first survey our earlier results about the limitation of noise posed on specific nano processors. Here, single electron logic is considered for voltage controlled logic with thermal excitations and generic shot noise is considered for current-controlled logic. Secondly, we discuss our recent results on the electronic noise in nanoscale sensors for SEnsing of Phage-Triggered Ion Cascade (SEPTIC, for instant bacterial detection) and for silicon nanowires for viral sensing. In the sensing of the phage-triggered ion cascade sensor, bacteriophage-infected bacteria release potassium ions and move randomly at the same time; therefore, electronic noise (i.e., stochastic signals) are generated. As an advanced model, the electrophoretic effect in the SEPTIC sensor is discussed. In the viral sensor, since the combination of the analyte and a specific receptor located at the surface of the silicon nanowire occurs randomly in space and time, a stochastic signal is obtained. A mathematical model for a pH silicon nanowire nanosensor is developed and the size quantization effect in the nanosensor is also discussed. The calculation results are in excellent agreement with the experimental results in the literature.
40

Design techniques for low power ADCs /

Yu, Wenhuan. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 74-75). Also available on the World Wide Web.

Page generated in 0.0703 seconds