• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 11
  • 2
  • 2
  • 1
  • Tagged with
  • 76
  • 76
  • 23
  • 14
  • 14
  • 13
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

L’instrument EUSO-Balloon et analyse de son efficacité de photo-détection / The EUSO-balloon instrument and an analysis of its photo-detecting efficiency

Rabanal Reina, Julio Arturo 08 December 2016 (has links)
JEM-EUSO (Extreme Universe Space Observatory on Japanese Experiment Module) est une expérience basée sur un télescope spatial d’optique diffractive, avec des lentilles de Fresnel, qui sera installé sur l’ISS en 2020. Il a comme but l’étude des UHECR et vise à améliorer d’un facteur de 10 les mesures actuelles de l’Observatoire Pierre-Auger. Le télescope EUSO-Balloon, qui a été validé technologiquement en 2014 a été le premier prototype intégrant l’ensemble de la chaîne de détection du télescope JEM-EUSO. Le principe de détection est basé sur la capture des photons UV individuels (photodétection) produits par fluorescence lors de l’interaction d’EAS avec l’atmosphère terrestre. Cette lumière est si faible qu’elle nécessite un instrument avec une efficacité de 100% pour la détection d’un photon. Le travail présenté dans ce manuscrit a porté sur toutes les étapes du projet EUSO-Balloon. Un procédé original de récupération de l’information des pixels avec une sensibilité faible a été développé. Le procédé consiste à utiliser une courbe (s-curve) générée par la modification du seuil de discrimination des signaux analogiques provenant des anodes des MAPMTs. Elle est valable pour tous les télescopes EUSO et sera utile dans l’espace, où la manipulation de l’appareil est limitée. / JEM-EUSO (Extreme Universe Space Observatory on Japanese Experiment Module) is an experiment based on a diffractive optical telescope, with Fresnel lenses, that will be installed on the ISS in 2020. It aims to study the UHECR, improving by a factor of 10 the current measurements of the Pierre-Auger Observatory. The EUSO-Balloon telescope, technically validated in 2014, was the first prototype with the entire detection chain of the JEM-EUSO telescope. The detection principle is based on the capture of individual UV photons (photodetection) produced by fluorescence when the EAS interact with the Earth’s atmosphere. The fluorescence light is so low that an instrument with 100% efficiency for the detection of a photon, is required. The work presented in this manuscript has dealt with all the steps of EUSO-Balloon project. An original procedure has been developed to recover the information from pixels with low sensitivity. The method consists in using a curve generated by the modification of the threshold used to discriminate the analog signals produced by the anodes of the MAPMTs. It is valid for all EUSO telescopes and will be most useful in space where the manipulation of the apparatus is limited.
72

Design techniques for wideband low-power Delta-Sigma analog-to-digital converters

Wang, Yan 08 December 2009 (has links)
Delta-Sigma (ΔΣ) analog-to-digital converters (ADCs) are traditionally used in high quality audio systems, instrumentation and measurement (I&M) and biomedical devices. With the continued downscaling of CMOS technology, they are becoming popular in wideband applications such as wireless and wired communication systems,high-definition television and radar systems. There are two general realizations of a ΔΣ modulator. One is based on the discrete-time (DT) switched-capacitor (SC) circuitry and the other employs continuous-time (CT) circuitry. Compared to a CT structure, the DT ΔΣ ADC is easier to analyze and design, is more robust to process variations and jitter noise, and is more flexible in the multi-mode applications. On the other hand, the CT ΔΣ ADC does not suffer from the strict settling accuracy requirement for the loop filter and thus can achieve lower power dissipation and higher sampling frequency than its DT counterpart. In this thesis, both DT and CT ΔΣ ADCs are investigated. Several design innovations, in both system-level and circuit-level, are proposed to achieve lower power consumption and wider signal bandwidth. For DT ΔΣ ADCs, a new dynamic-biasing scheme is proposed to reduce opamp bias current and the associated signal-dependent harmonic distortion is minimized by using the low-distortion architecture. The technique was verified in a 2.5MHz BW and 13bit dynamic range DT ΔΣ ADC. In addition, a second-order noise coupling technique is presented to save two integrators for the loop filter, and to achieve low power dissipation. Also, a direct-charge-transfer (DCT) technique is suggested to reduce the speed requirements of the adder, which is also preferable in wideband low-power applications. For CT ΔΣ ADCs, a wideband low power CT 2-2 MASH has been designed. High linearity performance was achieved by using a modified low-distortion technique, and the modulator achieves higher noise-shaping ability than the single stage structure due to the inter-stage gain. Also, the quantization noise leakage due to analog circuit non-idealities can be adaptively compensated by a designed digital calibration filter. Using a 90nm process, simulation of the modulator predicts a 12bit resolution within 20MHz BW and consumes only 25mW for analog circuitry. In addition, the noise-coupling technique is investigated and proposed for the design of CT ΔΣ ADCs and it is promising to achieve low power dissipation for wideband applications. Finally, the application of noise-coupling technique is extended and introduced to high-accuracy incremental data converters. Low power dissipation can be expected. / Graduation date: 2010
73

Development of a low energy cooling technology for a mobile satellite ground station

Kamanzi, Janvier January 2013 (has links)
Thesis submitted in fulfillment of the requirements for the degree Master of Technology:Electrical Engineering in the Faculty ofEngineering at the Cape Peninsula University of Technology Supervisor:Prof MTE KAHN Bellville December 2013 / The work presented in this thesis consists of the simulation of a cooling plant for a future mobile satellite ground station in order to minimize the effects of the thermal noise and to maintain comfort temperatures onboard the same station. Thermal problems encountered in mobile satellite ground stations are a source of poor quality signals and also of the premature destruction of the front end microwave amplifiers. In addition, they cause extreme discomfort to the mission operators aboard the mobile station especially in hot seasons. The main concerns of effective satellite system are the quality of the received signal and the lifespan of the front end low noise amplifier (LNA). Although the quality of the signal is affected by different sources of noise observed at various stages of a telecommunication system, thermal noise resulting from thermal agitation of electrons generated within the LNA is the predominant type. This thermal noise is the one that affects the sensitivity of the LNA and can lead to its destruction. Research indicated that this thermal noise can be minimized by using a suitable cooling system. A moveable truck was proposed as the equipment vehicle for a mobile ground station. In the process of the cooling system development, a detailed quantitative study on the effects of thermal noise on the LNA was conducted. To cool the LNA and the truck, a 2 kW solar electric vapor compression system was found the best for its compliance to the IEA standards: clean, human and environment friendly. The principal difficulty in the development of the cooling system was to design a photovoltaic topology that would ensure the solar panels were always exposed to the sun, regardless the situation of the truck. Simulation result suggested that a 3.3 kW three sided pyramid photovoltaic topology would be the most effective to supply the power to the cooling system. A battery system rated 48 V, 41.6 Ah was suggested to be charged by the PV system and then supply the power to the vapor compression system. The project was a success as the objective of this project has been met and the research questions were answered.
74

Elektronický šum piezokeramických snímačů akustické emise / Electronic Noise of Piezoceramic Sensors of Acoustic Emission

Majzner, Jiří January 2008 (has links)
In our work the analysis of electrical and noise characteristics of piezoceramic acoustic emission sensors is accomplished. The objective of our work is to analyze and optimize the signal-to-noise ratio. The starting point is the explanation of the noise origin in the acoustic emission sensors. The voltage fluctuation is caused by the dipole vibrations due to their interaction with phonons. The frequencies of dipoles vibrations have statistical distribution and the total energy of these vibrations is proportional to the temperature. The statistical distribution of vibration frequencies leads to the origination of the 1/f type noise spectral density. The interaction between the phonons and electric dipoles is characterized by the imaginary part of susceptibility which is related to the transformation of electric energy to the mechanical energy of vibrations. This process is irreversible and this forms important theoretical question whether the Callen-Welton fluctuation dissipation theorem could be used for the description of fluctuation processes in the acoustic emission sensors. In our work the influence of the real and imaginary part of the susceptibility on the noise and electrical characteristics is solved, the dissipation of electrical energy characterized by the imaginary part of susceptibility is described and the connection between the imaginary part of susceptibility and the noise power spectral density is discussed. Due to the fact that these processes originate in the interaction between electrical dipoles and phonons, we give account of the temperature dependencies of equivalent series resistance and power spectral density of noise voltage, respectively. Piezoceramics stiffness contribute significantly to the resonance creation hence the pressure influence on the sensor noise characteristics was studied. The signal-to-noise ration improvement requires the piezoceramic sample diameter increase for its constant thickness. The ratio of the noise spectral density and sensitivity is independent on the sample thickness. The noise voltage is proportional to the square root of spectral density and frequency bandwidth that is why for the high signal-to-noise ratio it is necessary to minimize the signal amplifier frequency bandwidth. The noise voltage power spectral density increases with the temperature while the activation energy is 20 meV for the temperature 300 K, and 80 meV for the temperature 400 K, respectively. The power spectral density of planar oscillations decreases with increasing pressure and simultaneously the resonant frequency increases. The bandwidth of the normalized spectral density increases with the pressure for the planar oscillations while is invariable for the thickness oscillations. For the examination of the influence of the piezoceramic electrical polarization on the electrical and noise characteristics the experimental study of these dependencies was accomplished for samples without polarization, and samples polarized by electric field EP = 500V/mm and 1000V/mm, respectively. The samples without polarization show the noise of 1/f type only which corresponds to the Callen-Welton fluctuation dissipation theorem. The polarization leads to the generation of planar and thickness oscillations and the power spectral density of voltage fluctuation on the electrodes is proportional to the temperature, and inversely proportional to the imaginary part of permittivity, to the sample area S, and the frequency f.
75

Performance enhancement techniques for low power digital phase locked loops

Elshazly, Amr 16 July 2014 (has links)
Desire for low-power, high performance computing has been at core of the symbiotic union between digital circuits and CMOS scaling. While digital circuit performance improves with device scaling, analog circuits have not gained these benefits. As a result, it has become necessary to leverage increased digital circuit performance to mitigate analog circuit deficiencies in nanometer scale CMOS in order to realize world class analog solutions. In this thesis, both circuit and system enhancement techniques to improve performance of clock generators are discussed. The following techniques were developed: (1) A digital PLL that employs an adaptive and highly efficient way to cancel the effect of supply noise, (2) a supply regulated DPLL that uses low power regulator and improves supply noise rejection, (3) a digital multiplying DLL that obviates the need for high-resolution TDC while achieving sub-picosecond jitter and excellent supply noise immunity, and (4) a high resolution TDC based on a switched ring oscillator, are presented. Measured results obtained from the prototype chips are presented to illustrate the proposed design techniques. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from July 16, 2012 - July 16, 2014
76

ON-MACHINE MEASUREMENT OF WORKPIECE FORM ERRORS IN ULTRAPRECISION MACHINING

Gomersall, Fiona January 2016 (has links)
Ultraprecision single point diamond turning is required to produce parts with sub-nanometer surface roughness and sub-micrometer surface profiles tolerances. These parts have applications in the optics industry, where tight form accuracy is required while achieving high surface finish quality. Generally, parts can be polished to achieve the desired finish, but then the form accuracy can easily be lost in the process rendering the part unusable. Currently, most mid to low spatial frequency surface finish errors are inspected offline. This is done by physically removing the workpiece from the machining fixture and mounting the part in a laser interferometer. This action introduces errors in itself through minute differences in the support conditions of the over constrained part on a machine as compared to the mounting conditions used for part measurement. Once removed, the fixture induced stresses and the part’s internal residual stresses relax and change the shape of the generally thin parts machined in these applications. Thereby, the offline inspection provides an erroneous description of the performance of the machine. This research explores the use of a single, high resolution, capacitance sensor to quickly and qualitatively measure the low to mid spatial frequencies on the workpiece surface, while it is mounted in a fixture on a standard ultraprecision single point diamond turning machine after a standard facing operation. Following initial testing, a strong qualitative correlation exists between the surface profiling on a standard offline system and this online measuring system. Despite environmental effects and the effects of the machine on the measurement system, the capacitive system with some modifications and awareness of its measurement method is a viable option for measuring mid to low spatial frequencies on a workpiece surface mounted on an ultraprecision machine with a resolution of 1nm with an error band of ±5nm with a 20kHz bandwidth. / Thesis / Master of Applied Science (MASc)

Page generated in 0.1494 seconds