• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Implementation of Low Jitter Clock Generators in Communication and Aerospace System

Jung, Seok Min, Jung, Seok Min January 2016 (has links)
The high demands on data processing and bandwidth in wireless/wireline communication and aerospace systems have been pushing forward circuit design techniques to their limitations to obtain maximum performances with respect to high operating frequency, low noise, small area, and low power consumption. Clock generators are essential components in numerous circuits, for instance, frequency synthesizers for high speed transceivers, clock sources for microprocessors, noise suppressed zero-delay buffers in system-on-chips (SOCs), and clock and data recovery (CDR) systems. Furthermore, clock generators are required to provide low jitter and high precision clocks in fully integrated image reject receivers and an ultra-wide tunability in time-interleaved applications. We explore several circuit design techniques and implementations of low jitter clock generator in this thesis. Firstly, a low jitter and wide range digital phase-locked loop (DPLL) operating 8 ~ 16 GHz is illustrated using a dual path digital loop filter (DLF). In order to mitigate the phase jitter in the phase detector (PD), we implement the separate loop filter and the output is not affected by the proportional path. For the stable operation, a 4 ~ 8 GHz linear phase interpolator (PI) is implemented in the proportional path. In addition, we design a low phase noise digitally controlled oscillator (DCO) using inductive tuning technique based on switched mutual coupling for wide operating range. The proposed DPLL implemented in 65 nm CMOS technology shows an outstanding figure-of-merit (FOM) over other state-of-art DPLLs in term of root mean square (RMS) and deterministic jitter (DJ). Secondly, we discuss a radiation-hardened-by-design (RHBD) PLL using a feedback voltage-controlled oscillator (FBVCO) in order to reduce DJ due to the radiation attack on the control voltage. Different from a conventional open loop VCO, the proposed FBVCO has a negative control loop and is composed of an open loop VCO, an integrator and a switched-capacitor resistor. Since the input to output of the FBVCO has a low-pass characteristic, any disturbance on the control voltage should be filtered and cannot affect the output phase. We are able to reduce the output frequency variation approximately 75% compared to the conventional PLL when the radiation pulse strikes on the control voltage. The proposed RHBD PLL is implemented in 130 nm and consumes 6.2 mW at 400 MHz operating frequency. Thirdly, a novel adaptive-bandwidth PLL is illustrated to optimize the jitter performance in a wide operating frequency range. We achieve a constant ratio of bandwidth and reference frequency with a closed loop VCO and an overdamping system with a charge pump (CP) current proportional to the VCO frequency for the adaptive-bandwidth technique. The proposed adaptive-bandwidth PLL presents 0.6% RMS jitter over the entire frequency range from 320 MHz to 2.56 GHz, which is 70% smaller than the conventional fixed-bandwidth PLL. Finally, we have developed a new feedback DCO to achieve a linear gain of DCO so that the DPLL can provide stability and a wide operating range in different process variations. Due to the negative feedback loop of the proposed DCO, the feedback DCO presents a linear gain from an input digital word to an output frequency. Moreover, we can control the bandwidth of the feedback DCO to optimize the total output phase noise in DPLL. In simulation, we can obtain 17 MHz/LSB of the peak-to-peak gain of the feedback DCO, which is reduced 96% over the conventional DCO.
2

Σχεδίαση και ανάπτυξη ψηφιακά ελεγχόμενου ταλαντωτή (Digitally Controlled Oscillator) στις συχνότητες 1.6-2 GHz

Ζωγράφος, Βασίλης 17 July 2014 (has links)
Σε αυτήν την εργασία μελετήθηκε και σχεδιάστηκε ένας ψηφιακά ελεγχόμενος ταλαντωτής (DCO) με σκοπό GSM εφαρμογή. Οι συχνότητες λειτουργίας κυμαίνονται στο φάσμα 1.6GHz – 2GHz με βήμα 20kHz. Ο θόρυβος φάσης ποσοτικοποιείται στα -160dB/Hz σε 20 MHz απόκλιση. Ο έλεγχος του DCO γίνεται πλήρως ψηφιακά επιτρέποντας την υλοποίηση πλήρους ψηφιακού βρόχου κλειδώματος φάσης (ADPLL) και καθολικού system on chip design (SoC). Ο ταλαντωτής καταναλώνει 4,5 mWatt με 3,76 mA ρεύμα σε 1.2 V τροφοδοσία. / A Digitally Controlled Oscillator is studied and designed for GSM application. The operating frequencies are 1.6-2GHz with tuning range of 400MHz and finest step size 20 KHz. A fully digital control is achieved form where arises the opportunity for fabrication of an All-Digital Phase Locked Loop (ADPLL) and the whole system on chip (SoC). The proposed DCO core consumes 3.76mA from a 1.2V supply.
3

A Low Noise Digitally Controlled Oscillator for a Wi-Fi 6 All-Digital PLL / En Digitalt Styrd Oscillator med Lågt Fasbrus för en Heldigital Wi-Fi 6 PLL

Lundberg, Tommy January 2023 (has links)
Following the rise of Internet of Things (IoT), or just the technological advancements and expectations in a world where the things are or will be connected, new demands are put on Integrated Circuit (IC) for wireless connectivity. The use cases seem endless; smart home, healthcare, entertainment, and science are all areas that can benefit from connectivity of low power electronics. But there are obstacles to overcome. Meeting the specifications, especially the phase noise requirements of modern high-speed wireless standards can be a challenge for devices that run on low supply voltages and are allowed only very limited power consumption. The focus of this thesis is the exploration of modern LC-oscillator architectures for RF-transceivers, and the design and post-layout evaluation of a Digitally Controlled Oscillator (DCO) intended to be used in an All-Digital Phase Locked Loop (ADPLL) in a 22 nm FD-SOI process. The DCO specifications are set by an ADPLL for the Wi-Fi 6 (MCS 11) standard. The ADPLL is replacing the blocks that are usually implemented as noise-sensitive analog components with more robust digital blocks that are easier to integrate with baseband- and digital-circuitry. A dual-core class-C oscillator with a dynamic-biasing circuit is proposed and designed to meet the specification of -121 dBc/Hz phase noise at a 1 MHz offset from 7.8 GHz, a –7.18.6 GHz tuning range, and a frequency resolution of at most 35 kHz around 7.8 GHz. The phase noise specification is met; a phase noise of -121 dBc/Hz at the 1 MHz offset from 7.8 GHz is achieved in post-layout simulation along with a Figure of Merit (FoM) of 189.9, and an average tracking frequency step of 5.8 MHz. The tuning range specification was not met, but it is reasonable to believe that the specified range can be met after some redesign of the capacitor banks. Further work will be required. / Till följd av tillväxten inom Internet of Things (IoT), eller bara de teknologiska framgångar och förväntningar på en värld där dem flesta saker är eller kommer att bli uppkopplade, ställs nya krav på Integrated Circuit (IC)-komponenter för trådlös uppkoppling. Tillämningsområdena är oändliga; smart home, sjukvård och hälsa, underhållning och forskning är områden som som kan dra nytta av nya uppkopplingsmöjligheter med extremt strömsnål elektronik. Att leva upp till specifikationerna för moderna trådlösa höghastighetsuppkopplingar, speciellt när det kommer till fasbrus, kan dock vara en utmaning för enheter som måste klara sig med en väldigt begränsad effektåtgång. Fokus för denna avhandling är design och utvärdering på schematik och layout-nivå av en Digitally Controlled Oscillator (DCO) för en 22 nm Fully Depleted Silicon-On-Insulator (FD-SOI)-process avsedd att klara specifikationen satt av en given All-Digital Phase Locked Loop (ADPLL) för Wi-Fi 6 (MCS 11) standarden. En DCO och ADPLL ersätter block som tidigare tillämpats som analoga bruskänsliga komponenter med robustare digitala komponenter som är enklare att integrera med bas-band och digital logik-kretsar. En dubbelkärnig klass-C DCO med en dynamisk biaskrets föreslås för att nå kravet på fasbrus på maximalt -121 dBc/Hz mätt vid 1 MHz från en frekvens på 7.8 GHz, med ett frekvensomfång 7.1-8.6 GHz och en frekvensupplösning under 35 kHz. Fasbruset vid denna 1 MHz från 7.8 GHz uppmättes i simulering till -121 dBc/Hz, och en Figure of Merit (FoM) på 189.9 har uppnåtts, samt en genomsnittlig frekvensupplösning på 5.8 MHz nära 7.8 GHz. Designen klarar inte av att möta kraven på frekvensomfång, men det är sannolikt att en liknande design kan möta specifikationen efter ytterligare revision. Ytterligare arbete krävs.
4

Performance enhancement techniques for low power digital phase locked loops

Elshazly, Amr 16 July 2014 (has links)
Desire for low-power, high performance computing has been at core of the symbiotic union between digital circuits and CMOS scaling. While digital circuit performance improves with device scaling, analog circuits have not gained these benefits. As a result, it has become necessary to leverage increased digital circuit performance to mitigate analog circuit deficiencies in nanometer scale CMOS in order to realize world class analog solutions. In this thesis, both circuit and system enhancement techniques to improve performance of clock generators are discussed. The following techniques were developed: (1) A digital PLL that employs an adaptive and highly efficient way to cancel the effect of supply noise, (2) a supply regulated DPLL that uses low power regulator and improves supply noise rejection, (3) a digital multiplying DLL that obviates the need for high-resolution TDC while achieving sub-picosecond jitter and excellent supply noise immunity, and (4) a high resolution TDC based on a switched ring oscillator, are presented. Measured results obtained from the prototype chips are presented to illustrate the proposed design techniques. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from July 16, 2012 - July 16, 2014

Page generated in 0.1164 seconds