Spelling suggestions: "subject:"electrospray ionization"" "subject:"électrospray ionization""
101 |
Mass spectrometry of analytes related to sports anti-doping: Mapping gas-phase dissociation pathways, differentiating isomers using in-source collisional activation, and evaluating ion mobility spectrometry for enantiomer separationCarlo, Matthew James 13 August 2024 (has links) (PDF)
Mass spectrometry is a commonly used technique in the modern sports anti-doping laboratory. Characteristic product ions observed in tandem mass spectrometry (MS/MS) can be used to identify prohibited substances. However, with continuous introduction of novel uncharacterized drugs, there is a need to increase the selectivity and coverage identification of mass spectrometry and non-mass spectrometry-based methods. The use of separations methods, (e.g., chromatography) is another means to identify substances using retention times, providing an additional dimension of analysis. Broadly, this work examines mass spectrometry of small molecules, with a focus on pharmaceuticals of sports anti-doping relevance. To gain a deeper understanding of characteristic product ions and their dissociation pathways, multi-stage mass spectrometry (MSn) and energy-resolved collision induced dissociation (E-resolved CID) were used. Using these methods, two classes of pharmaceuticals were studied: beta-2 agonists and beta blockers. Sequential versus competitive pathways were elucidated for four beta-2 agonists: isoetharine, salbutamol, formoterol, and salmeterol. Water loss is a common dissociation mechanism, with multiple water losses observed where structurally possible. A similar methodology was used for further investigation of the dissociation chemistry of five beta blockers (labetalol, bisoprolol, carteolol, acebutolol, and atenolol). Insights into the nature of the neutral losses and structures of product ions characteristic to the class are highlighted. Isomers that share product ions pose a special challenge, where differentiation is not possible using single collision energy CID-MS. Three sets of isomers with similar MS/MS patterns (leucine and tert¬-leucine, quinoline and isoquinoline, and para-, ortho-, and meta-aminobenzoic acid) were analyzed by E-resolved CID to investigate the analytical utility of this approach for isomer differentiation. Unique “fingerprints” were found among each set of isomers and additional analytical considerations were also investigated. Finally, separation of enantiomers is another special challenge, as MS techniques are “chirality blind”. Ion mobility spectrometry (IMS), a gas-phase separation technique, has been reported to show separation of enantiomers with the aid of drift gas modifiers (DGMs). Chiral butanol was used as a DGM to aid the IMS analysis of salbutamol enantiomers. These efforts were ultimately unsuccessful, which is in line with current literature.
|
102 |
Espectrometria de massas por probe electrospray ionization (PESI-MS) com polímero molecularmente impresso (MIP) para determinação de ésteres de forbol em folhas de Jatropha curcas / Molecularly imprinted polymer-coated probe electrospray ionization mass spectrometry (MIPCPESI-MS) for determination of phorbol esters in Jatropha curcas leavesSilva, Lidya Cardozo da 20 July 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-08-20T13:36:48Z
No. of bitstreams: 2
Dissertação - Lidya Cardozo da Silva - 2018.pdf: 2382834 bytes, checksum: e5a79619d923d442540c5bf0549318bd (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-08-20T13:38:04Z (GMT) No. of bitstreams: 2
Dissertação - Lidya Cardozo da Silva - 2018.pdf: 2382834 bytes, checksum: e5a79619d923d442540c5bf0549318bd (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-08-20T13:38:04Z (GMT). No. of bitstreams: 2
Dissertação - Lidya Cardozo da Silva - 2018.pdf: 2382834 bytes, checksum: e5a79619d923d442540c5bf0549318bd (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-07-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Jatropha curcas L. is a euphorbiaceous oilseed plant considered toxic to humans and animals due to the presence of phorbol esters (PEs). Traditionally, the detection of these toxic compounds has been done in J. curcas seeds and derivates via chromatographic separation methods such as HPLC-UV and HPLC-MS. Although efficient, these techniques are laborious and require high time and solvent consumption, thus it would be interesting the development of new analytical methods to determine these compounds with more practicality. Probe electrospray ionization is frequently used in ambient mass spectrometry allowing analysis with minimum sample preparation. However, for complex samples analysis, this technique presents low sensitivity and ionization suppression. In this study, a molecularly imprinted polymer-coated probe electrospray ionization mass spectrometry (MIPCPESI-MS) method was developed for determination of phorbol esters in methanolic extracts of Jatropha curcas leaves with direct extraction form the ionization source. The synthesized molecularly imprinted polymer (MIP) proved to be adequate for extraction of the PEs in methanolic extracts of J. curcas leaves with better performance as extraction phase in comparison with the non-imprinted polymer (NIP). The MIPCPESI method allowed detection of phorbol 12,13-diacetate (PDA) and other three PEs metabolite ions from Jatropha leaves with minimal sample preparation, and with higher signal intensities compared to analysis with conventional PESI. For the PDA, calibration curve exhibited linearity with R2 > 0.99, LOD and LOQ in µg.mL-1 range, precision and accuracy values, respectively, between 4.06 to 13.49% and -1.60 to -15.26 %. Finally, MIPCPESI was employed for PDA quantification in methanolic extracts of six different J. curcas leaves genotypes resulting in concentrations ranging from 222.19 ± 23.55 to 528.23 ± 19.72 µg.g-1 for toxic samples. / A Jatropha curcas L. é uma oleaginosa euforbiácea considerada tóxica para humanos e animais devido à presença de ésteres de forbol (PEs). Tradicionalmente, a detecção destes compostos tóxicos tem sido feita em tortas e sementes de J. curcas por meio do uso de técnicas de separação cromatográfica como HPLC-UV e HPLC-MS que apesar de eficientes são laboriosas e requerem alto consumo de tempo e solventes. Dessa forma, seria interessante o desenvolvimento de novas técnicas analíticas para determinação desses compostos com maior praticidade. Probe electrosrpay ionization (PESI) é uma das técnicas de ionização utilizadas na espectrometria de massas ambiente que permite análises rápidas com mínimo preparo de amostras. No entanto, para análise de amostras complexas essa técnica apresenta baixa sensibilidade e supressão iônica. Neste estudo, foi desenvolvido um método de análise por espectrometria de massas por Probe electrospray revestido com polímero molecularmente impresso (MIPCPESI-MS) para determinação de ésteres de forbol em extratos metanólicos de folhas de Jatropha curcas com extração direta da fonte de ionização. O polímero molecularmente impresso (MIP) sintetizado mostrou-se adequado para extração de PEs em extratos metanólicos de folhas de J. curcas tendo melhor desempenho como fase extratora quando comparado ao polímero não molecularmente impresso (NIP). O método MIPCPESI-MS possibilitou a detecção do forbol 12,13-diacetato (PDA) e de outros três íons metabólitos presentes nas folhas de J. curcas com mínimo preparo de amostras e com maior intensidade de sinais quando comparado às análises com PESI convencional. Para o PDA, a curva de calibração apresentou linearidade com R2 > 0.99, LOD e LOQ na faixa de µg.mL-1, valores de precisão entre 4.06 e 13.49 % e exatidão entre -1.60 e -15.26 %. Posteriormente, o método MIPCPESI foi empregado na quantificação de PDA em seis extratos metanólicos de diferentes genótipos de folhas de J. curcas resultando em valores concentrações entre 222.19 ± 23.55 a 528.23 ± 19.72 µg.g-1 nas amostras tóxicas.
|
103 |
Synthesis and characterization of surfmers for the synthesis of polystyrene-clay nanocompositesSamakande, Austin 12 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2005. / Two cationic polymerizable surfactants (surfmers), (11-acryloyloxyundecyl)dimethyl-(2-hydroxyethyl)ammonium bromide (Ethanol surfmer) and (11-acryloyloxyundecyl)-dimethylethylammonium bromide (Ethyl surfmer) were synthesized and characterized. Characterization was done using, conductivity, Fourier transform infra-red spectroscopy (FT-IR), electrospray mass spectrometry (ESMS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS) and polarized light microscopy with a heating stage. These surfmers and the commercial surfactant cetyltrimethylammonium bromide (CTAB) were used for functionalization of sodium montmorillonite (Na+-MMT), thereby forming organophilic MMT. The functionalization of MMT dispersions was carried out by ion exchange of the sodium ions in Na+-MMT by surfactants in aqueous media. Organophilic MMT clays were then dispersed in styrene and subsequently polymerized by a free radical reaction to yield polystyrene-clay nanocomposites. This in-situ intercalative polymerization process resulted in an exfoliated structure for Ethyl surfmer modified clay, a partially exfoliated structure for Ethanol surfmer modified clay and an intercalated structure for CTAB modified clay. These nanocomposite structures were confirmed by SAXS and transmission electron microscopy (TEM). The nanocomposites exhibited enhanced thermal stability. All the nanocomposites exhibited an inferior storage modulus (GI) at low clay contents relative to polystyrene. At higher clay loadings there was an increase in GI which was dependent on the level of clay dispersion and the clay content. All the nanocomposites showed an increase in glass transition temperature (Tg), regardless of the amount of clay and the level of clay dispersion. There was a shift towards higher temperatures and broadening of the tan δ peak, which was in turn dependent on the amount of clay and level of clay dispersion. Molecular masses of polystyrene-clay nanocomposites were in the range 105 g/mol for bulk polymerization relative to 103 g/mol for solution polymerization as revealed by gel permeation chromatography (GPC).
|
104 |
Cyanine Dye Interactions with Quadruplex and Duplex DNA: Changes in Conformation, Stability, and AffinityMickelson, Leah E 17 June 2011 (has links)
There is a high demand for quadruplex-specific compounds that not only bind preferentially to quadruplex DNA over duplex DNA, but also bind to one quadruplex motif over other motifs. Quadruplex structures are recognized as common occurrences in cancer cells, and if a compound could stabilize this structure, it may serve as an effective anti-cancer treatment with minimal side effects. In this study, cyanine dyes’ interactions with DNA were analyzed with fluorescence titrations, UV-Vis thermal studies, circular dichroism titrations, and surface plasmon resonance (SPR) analysis. With these techniques, binding affinity, DNA stabilization, and conformational shifts were analyzed to determine if cyanine dyes could act as quadruplex-specific binding compounds for possible cancer treatments.
|
105 |
Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometryHarris, Glenn A. 28 June 2011 (has links)
Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions.
New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms.
The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in Chapter 1. Chapter 2 presents the first investigations into the atmospheric pressure ion transport phenomena during DART analysis. Chapter 3 provides a comparison on the internal energy deposition processes during DART and pneumatically assisted-ESI. Chapter 4 investigates the complex spatially-dependent sampling sensitivity, dynamic range and ion suppression effects present in most DART experiments. New implementations and applications with DART are shown in Chapters 5 and 6. In Chapter 5, DART is coupled to multiplexed drift tube ion mobility spectrometry as a potential fieldable platform for the detection of toxic industrial chemicals and chemical warfare agents simulants. In Chapter 6, transmission-mode DART is shown to be an effective method for reproducible sampling from materials which allow for gas to flow through it. Also, Chapter 6 provides a description of a MS imaging platform coupling infrared laser ablation and DART-like phenomena. Finally, in Chapter 7 I will provide perspective on the work completed with DART and the tasks and goals that future studies should focus on.
|
106 |
Mass Spectrometry with Electrospray Ionization from an Adjustable GapEk, Patrik January 2008 (has links)
<p><b>In this thesis the fabrication and analytical evaluation of two new electrospray emitters utilized for mass spectrometry analysis is presented. The emitters are based on a new concept, where the spray orifice can be varied in size. The thesis is based on two papers.</b></p><p>All present-day nanoelectrospray emitters have fixed dimensions. The range of the applicable flow rate for such an emitter is therefore rather limited and exchange of emitters may be necessary from one experiment to another. Optimization of the signal of the analyte ions is also limited to adjustments of the applied voltage or the distance between the emitter and the mass spectrometer inlet. Furthermore, clogging can occur in emitters with fixed dimensions of narrow orifice sizes. In this thesis, electrospray emitters with a variable size of the spray orifice are proposed. An open gap between two thin substrates is filled with sample solution via a liquid bridge from a capillary. Electrospray is generated at the end point of the gap, which can be varied in width.</p><p>In Paper I, electrospray emitters fabricated in polyethylene terephthalate have been evaluated. Triangular tips are manually cut from the polymer film. The tips are mounted to form a gap between the edges of the tips. The gap wall surfaces are subjected to a hydrophilic surface treatment to increase the wetting of the gap walls.</p><p>In Paper II, silicon electrospray chips with high precision are fabricated and evaluated. A thin beam, elevated from the bulk silicon chip is fabricated by means of deep reactive ion etching. The top surfaces of the beams of two chips act as a sample conduit when mounted in the electrospray setup. An anisotropic etching step with KOH of the intersecting <100> crystal planes results in a very sharp spray point. The emitters were given a hydrophobic surface treatment except for the hydrophilic gap walls.</p><p>For both emitter designs, the gap width has been adjusted during the experiments without any interruption of the electrospray. For a continuously applied peptide mixture, a shift towards higher charge states and increased signal to noise ratios could be observed when decreasing the gap width. The limit of detection has been investigated and the silicon chips have been interfaced with capillary electrophoresis.</p>
|
107 |
Mass Spectrometric Analysis of Oxylipins : Application to Cytochrome P450-Dependent MetabolismNilsson, Tomas January 2009 (has links)
Cytochrome P450 (CYP) family 4 constitutes monoxygenases responsible for hydroxylation of fatty acids and other lipids. For example, CYP4F3 metabolizes leukotrienes and CYP4F8 prostaglandin H. Importantly, six of the twelve CYP4 enzymes are orphans, i.e., with an unknown biological function. The catalytic activity of the enzyme CYP4F8 is known in seminal vesicles, but not in skin or psoriatic lesions, where CYP4F8 is highly expressed. The orphan CYP4F22 is also expressed in skin, and mutations in its gene has been linked to the rare skin disease lamellar ichthyosis, together with, inter alia, mutations in the genes of 12R-LOX and eLOX3. These enzymes appear to constitute a pathway producing hydroperoxides and epoxyalcohols from arachidonic acid. CYP4F22 is hypothesized to act in a consecutive step within this pathway. The aim of this thesis was to develop analytical methods to prepare and analyze hydroperoxides and epoxyalcohols derived from fatty acids by LC-MS/MS, and to investigate the catalytic performance of CYP4F8 and CYP4F22 for these substrates. The 12R-hydroperoxide of arachidonic acid (12R-HPETE) was prepared by autoxidation and separated from other hydroperoxides by chiral HPLC. MS/MS analysis showed that the hydroperoxides were unstable within the ion trap, but were stabilized by an increase in the isolation width. From the hydroperoxides, epoxyalcohols were generated by hematin treatment, and separated by normal phase HPLC. MS/MS spectra of several epoxyalcohols, derived both from arachidonic acid and linoleic acid, were characterized with aid of [2H]isotopomers and MS3 analysis. Apart from metabolic studies the thesis also include detailed information on MS/MS analysis of several oxygenated fatty acids, with proposed fragmentation mechanisms. The open reading frame of CYP4F22 was expressed in a recombinant yeast system, and LC-MS/MS analysis revealed that CYP4F22 catalyzed ω3 hydroxylation of arachidonic acid, but not any of the tested epoxyalcohols. In contrast, CYP4F8 metabolizes an epoxyalcohol derived from 12R-HPETE, 11R,12R-epoxy-10-hydroxyeicosatrienoic acid, to the ω3 hydroxy metabolite. Conclusively, it was demonstrated that LC-MS/MS could be used for the analysis and separation of hydroperoxides and epoxyalcohols for metabolic studies.
|
108 |
Protein mass spectrometry in the drug discovery process /Tjernberg, Agneta, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 5 uppsatser.
|
109 |
Application of mass spectrometry in enzyme deficiency assay for newborn screening purpose /Wang, Ding, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 137-143).
|
110 |
Model validation for aqua ammonia scrubber process and, Exploratory research into alklytin pollutants : alklytin method evaluations /Stutz, Kathleen. January 2006 (has links)
Thesis (M.S.)--Duquesne University, 2006. / Title from document title page. Abstract included in electronic submission form. Includes bibliographical references (p.72) and index.
|
Page generated in 0.1361 seconds