• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 700
  • 182
  • 102
  • 28
  • 21
  • 16
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1576
  • 1576
  • 1452
  • 540
  • 240
  • 161
  • 160
  • 157
  • 137
  • 136
  • 134
  • 126
  • 122
  • 120
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Cantilever and tip design for modified lateral force microscopy

Mengying Wang (7042988) 16 August 2019 (has links)
The atomic force microscopy (AFM) has been widely used for the investigation of the surface topography and high precision force measurements at the nano-scale. Researchers have utilized AFM to quantify the viscosity of the cell membrane in the vertical direction, which is a primary indicator of a cell's functionality and health condition. A modified lateral force microscopy (LFM) to quantify viscosity through lateral force measurements applied on the sidewall of cell membranes. The resulting twist of the cantilever in mLFM is induced by the contact between sidewalls of the tip and features on the sample. However, the measurement sensitivity of the mLFM requires improvement. This thesis focused on optimizing probe geometries and materials to improve the measurement sensitivity. <div>Probes (cantilevers and tips) with different geometries and materials properties were proposed and their deformations in the mLFM force measurement were studied. The force measurement process, in which the tip contacted the sidewall of control samples, including a hard sample and a soft sample, was modeled by finite element analysis (FEA). This study calculated torsional spring constants and measurement sensitivities according to the data produced from FEA. The impact of various geometric parameters on the torsional spring constant and measurement sensitivity were presented and discussed. The optimal probe configuration and material for measurement sensitivity was found from the parameters tested in this research. For the hard sample, the cantilever with a "T-shape" cross section and a tetrahedral tip made from graphite had optimum measurement sensitivity. For the soft sample, the cantilever with a "T-shape" cross section and a conical tip with a 600nm-radius sphere tip apex had the optimum measurement sensitivity. The reason for the difference in optimum probe combination for hard and soft sample was that the measurement sensitivity for hard sample was more susceptible to change in lever arm distance and measurement sensitivity for soft sample was more susceptible to the change in tip radius. The measurement sensitivity has been improved significantly on both hard sample and soft sample compared to a DNP V-shaped probe. </div>
82

Effect of unicompartmental knee replacement tibial component design on proximal tibial strain and ongoing pain

Scott, Chloe Elizabeth Henderson January 2016 (has links)
Introduction: Unicompartmental knee replacements (UKRs) are an alternative to total knee replacements (TKRs) for treating isolated medial compartment knee osteoarthritis. However, revision rates are consistently higher than for TKR and UKRs are commonly revised for “unexplained” pain, a possible cause of which is elevated proximal tibial bone strain. The influence of implant design on this strain has not been previously investigated. Aims: The aims of this thesis are to determine the effect of medial UKR tibial component design on proximal tibial strain and ongoing pain. Methods: A retrospective clinical cohort study was performed comparing patient reported outcome and implant survival of a metal backed mobile bearing UKR implant (n=289) and an all-polyethylene (AP) fixed bearing UKR implant (n=111) with minimum 5 year follow up. A method of digital radiological densitometry, the greyscale ratio b (GSRb), was developed, validated and applied to plain radiographs to measure changes in bone density over 5 years in both the metal backed (n=173) and all-polyethylene (n=72) UKR patients. A finite element model (FEM) was validated against previous mechanical testing data and was used to analyse the effect of metal backing and implant thickness on proximal tibial cancellous bone strain in fixed bearing UKR implants. Results: There were no significant differences in patient reported outcomes between implants throughout follow up. Ten year all cause survival was 90.2 (95%CI 86-94) for the metal backed implant and 79.9 (60.7 to 99) for the all-polyethylene. Revision for unexplained pain was significantly greater in the AP implant where revisions were performed significantly earlier. Overall, the mean GSRb reduced following medial UKR with no difference between implants. In those patients where GSRb increased, patient reported outcomes were worse with an association with ongoing pain. A finite element model was successfully validated using acoustic emission and digital image correlation data. This model confirmed that the volume of cancellous bone exposed to compressive and tensile strains in excess of 3000 (pathological overloading) and 7000 (fracture) microstrain were higher in the AP implants, as were peak tensile and compressive strains. Varying polyethylene insert thickness did not affect these strain parameters in the metal backed implant, but varying polyethylene thickness in the AP implants had significant effects at all loads with elevated strains in thinner implants. Increasing the AP thickness to 10mm did not reduce strains to the levels found under metal backed implants, and imminent cancellous bone failure was implied when AP thickness was reduced to 6mm. Conclusion: UKRs with all-polyethylene tibial components are associated with greater proximal tibial strains than metal backed implants and this is exacerbated in thinner implants. The clinical consequences of this are uncertain. Medial UKR implantation does alter proximal tibial GSRb, though this is not uniform and is independent of implant type. When GSRb increases it is associated with ongoing pain.
83

Predicting the Response of Aluminum Casting Alloys to Heat Treatment

Wu, Chang Kai 15 April 2012 (has links)
The objective of this research was to develop and verify a mathematical model and the necessary material database that allow predicting the physical and material property changes that occur in aluminum casting alloys in response to precipitation-hardening heat treatment. The model accounts for all three steps of the typical precipitation hardening heat treatment; i.e., the solutionizing, quenching, and aging steps; and it allows predicting the local hardness and tensile strength, and the local residual stresses, distortion and dimensional changes that develop in the cast component during each step of the heat treatment process. The model uses commercially available finite element software and an extensive database that was developed specifically for the aluminum alloy under consideration - namely A356.2 casting alloy. The database includes the mechanical, physical, and thermal properties of the alloy all as functions of temperature. The model predictions were compared to measurements made on commercial cast components that were heat treated according to standard heat treatment protocols and the model predictions were found to be in good agreement with the measurements.
84

Factors Affecting Occupant Risk of Knee-Thigh-Hip Injury in Frontal Vehicle Collisions

Heath, Douglas 28 April 2010 (has links)
Every year, millions of people are killed or injured in motor vehicle accidents in the United States. Although recent improvements to occupant restraint systems, such as seatbelts and airbags, have significantly decreased life threatening injuries, which usually occur to the chest or head, they have done little to decrease the occurrence of lower extremity injuries. Although lower extremity injuries are not usually life threatening, they can result in chronic disability and high psychosocial cost. Of all lower extremity injuries, injuries to the knee-thigh-hip (KTH) region have been shown to be among the most debilitating. This project used a finite element (FE) model of the KTH region to study injury. A parametric investigation was conducted where the FE KTH was simulated as a vehicle occupant positioned to a range of pre-crash driving postures. The results indicate that foot contact force and knee kinematics during impact affects the axial force absorbed by the KTH region and the likelihood of injury. The results of the study could be used to reevaluate the lower extremity injury thresholds currently used to regulate vehicle safety standards. Also, the results could be used to provide guidelines to vehicle manufacturers for developing safer occupant compartments.
85

Improvements to the weak-post W-beam guardrail

Engstrand, Klas E 23 June 2000 (has links)
"Recent full-scale crash tests of the weak-post W-beam guardrail system have resulted in unsatisfactory collision performance as evaluated by the National Cooperative Highway Research Program (NCHRP) Report 350. Since acceptable crash test performance is required in order to use a guardrail on a Federal-Aid Highway in the United States, the poor performance of the weak-post W-beam guardrail is a significant problem to those states that use it. The goal of this project was to improve the impact performance of the weak-post W-beam guardrail system so that it satisfies the requirements of NCHRP Report 350 at test level three."
86

Development of ultrasonic devices for microparticle and cell manipulation

Qiu, Yongqiang January 2014 (has links)
An emerging demand for the precise manipulation of cells and microparticles for applications in cell biology and analytical chemistry has driven recent development of ultrasonic manipulation technology. Compared to the other major technologies used for cell and particle manipulation, such as magnetic tweezing, optical tweezing and dielectrophoresis, ultrasonic manipulation has shown excellent capabilities and flexibility in a variety of applications with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle cells with dimensions up to tens of microns and agglomerates of a large number of cells. This thesis reviews current state-of-the-art of ultrasonic manipulation technology and reports the development of various ultrasonic manipulation devices, including simple devices integrated with high frequency (&gt; 20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterisation methods and possible applications are discussed. The behaviour and performance of the devices have been investigated and predicted in virtual prototyping with computer simulations, and verified experimentally. Issues associated during the development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialisation potential are also addressed.
87

A Computational Assessment of Lisfranc Injuries and their Surgical Repairs

Perez, Michael 01 January 2019 (has links)
While Lisfranc injuries in the mid foot are less common than other ankle and mid foot injuries, they pose challenges in both properly identifying them and treating them. When Lisfranc injuries are ligamentous and do not include obvious fractures, they are very challenging for clinicians to identify unless weight bearing radiographs are used. The result is that 20%-40% of Lisfranc injuries are missed in the initial evaluation. Even when injuries are correctly identified the outcomes of surgical procedures remain poor. Existing literature has compared the different surgical procedures but has not had a standard approach or procedures across studies. This study uses a computational biomechanical model validated on a cadaveric study to evaluate factors that impact injury presentation and to compare the different procedures ability to stabilize the Lisfranc joint after an injury. Using SolidWorks® a rigid body kinematic model of a healthy human foot was created whereby the 3D bony anatomy, articular contacts, and soft tissue restraints guided biomechanical function under the action of external perturbations and muscle forces. The model was validated on a cadaveric study to ensure it matched the behavior of a healthy Lisfranc joint and one with a ligamentous injury. The validated model was then extended to incorporate muscle forces and different foot orientations when simulating a weight bearing radiograph. The last section of work was to compare the stability of four different surgical repairs for Lisfranc injuries. These procedures were three open reduction and internal fixation (ORIF) procedures with different hardware (screws, screws and dorsal plates, and endobuttons) and primary arthrodesis with screws. They required use of finite element analysis which was performed in Ansys Workbench. For the presentation of injuries, both muscle forces and standing with inversion or eversion could reduce the diastasis (separation) observed for weight bearing radiographs and thus confuse the diagnosis. When comparing the different surgical procedures, the ORIF with screws and primary arthrodesis with screws showed the most stable post-operative Lisfranc joint. However, the use of cannulated screws for fixation showed regions of high stress that may be susceptible to breakage. A challenge in the literature has been the use of different experimental designs and metrics when comparing two of the possible procedures for a Lisfranc injury head to head. This study has been able to benchmark four procedures using the same model and set of metrics. Since none of the existing procedures showed consistently good to excellent patient outcomes, more procedures could be proposed in the future. If this were to occur, this study offers a standard procedure for benchmarking the new procedure’s post-operative mechanical stability versus those procedures currently in use.
88

Understanding mechanical trade-offs in changing centers of rotation for reverse shoulder arthroplasty design

Permeswaran, Vijay Niels 01 May 2014 (has links)
Though the literature contains many computational models studying RSA, very few utilize finite element analysis to study stresses in the implant and the surrounding bone. The introductions section shows that many parameters (center of rotation lateralization, center of rotation superior or inferior position, tilt of the cut glenoid surface, glenosphere shape design, glenosphere size, humeral design, notch severity, etc.) have been studied independently utilizing many different methods (finite element modeling and non-FE computational modeling). However, the introduction section also detailed the current limitations in modern modeling as well as many examples of the heights to which finite element modeling can be taken to study RSA. Using these limitations as guidelines, the goal of this project is to create a robust FE model of RSA to study the effect of lateralization on scapular notching and shoulder function. In the following chapters, the development of the model is detailed. In addition, results produced by the incrementally advanced models are shown. In Chapter 2, the initial finite element model encompassing scapular and RSA hardware geometry is described. Chapter 3 contains description of incremental changes to the model including humeral geometry and muscle element incorporation. An anatomically realistic configuration of the finite element model with increased functionality is detailed in Chapter 4. Finally, Chapter 5 discusses the assets and limitations of the current model as a platform for future research. In addition, a proposed validation protocol is presented.
89

Computational analysis applied to the study of post-traumatic osteoarthritis

Goreham-Voss, Curtis Michael 01 July 2011 (has links)
Post-traumatic osteoarthritis (PTOA) is a debilitating joint disease in which cartilage degenerates following joint trauma, including intra-articular fracture or ligament rupture. Acute damage and chronically altered joint loading have both been implicated in the development of PTOA, but the precise pathway leading from injury to cartilage degeneration is not yet known. A series of computational analyses were performed to gain insight into the initiation and progression of cartilage degeneration. Finite element models of in vitro drop-tower impacts were created to evaluate the local stress and strain distributions that cartilage experiences during such experiments. These distributions were compared with confocal imaging of cell viability and histologically apparent matrix damage. Shear strain and tensile strain both appear to correlate with the non-uniform percentage of cell death seen in the impact region. In order to objectively evaluate structural damage to the cartilage matrix, an automated image processing program was written to quantify morphologic characteristics of cartilage cracks, as seen in histology slides. This algorithm was used to compare the damage caused by different rabbit models of PTOA and to investigate the progression of matrix damage over time. Osteochondral defect insults resulted in more numerous and more severe cracks than ACL transection. Interestingly, no progression of structural damage was identified between 8 weeks and 16 weeks in these rabbit PTOA models. A finite element based optimization algorithm was developed to determine cartilage material properties based on the relaxation behavior of an indentation test. This was then used to evaluate the spatial and temporal progression of cartilage degeneration after impact. Impacting cartilage with 2.18 J/cm2 through a metal impactor caused an immediate increase in permeability and decrease in modulus, both of which recover to nearly pre-impact levels within two weeks. Biologic testing suggests that the modulus changes were due to collagen fibril damage that is then repaired. Impacting with higher energy caused material softening that did not return to normal, suggesting an impact injury threshold below which cartilage had some ability to repair itself. To evaluate the effects of cartilage cracks on local stress and strain environments, finite element models of cracked cartilage were created. A physiologically-relevant, depth-dependent cartilage material model was developed and used to ensure accurate strains throughout the cartilage depth. The presence of a single crack was highly disruptive to the strain fields, but the particular shape or size of that crack had little effect. The most detrimental perturbations included two cracks within close proximity. When two cracks were within 0.5 mm of one another, the strain field between them increased in an additive fashion, suggesting a threshold for the amount of structural damage cartilage can withstand without being severely overloaded. The finite element models of cracked cartilage were also incorporated into an iterative degeneration simulation to evaluate the ability of mechanical loading to cause localized cartilage damage to spread to full-joint osteoarthritis.
90

Kinetostatic modelling of compliant micro-motion stages with circular flexure hinges.

Yong, Yuen Kuan January 2007 (has links)
This thesis presents a) a scheme for selecting the most suitable flexure hinge compliance equations, and b) a simple methodology of deriving kinetostatic models of micro-motion stages by incorporating the scheme mentioned above. There were various flexure hinge equations previously derived using different methods to predict the compliances of circular flexure hinges. However, some of the analytical/empirical compliance equations provide better accuracies than others depending on the t/R ratios of circular flexure hinges. Flexure hinge compliance equations derived previously using any particular method may not be accurate for a large range of t/R ratios. There was no proper scheme developed on how to select the most suitable and accurate hinge equation from the previously derived formulations. Therefore, the accuracies and limitations of the previously derived compliance equations of circular flexure hinges were investigated, and a scheme to guide designers for selecting the most suitable hinge equation based on the t/R ratios of circular flexure hinges is presented in this thesis. This thesis also presents the derivation of kinetostatic models of planar micromotion stages. Kinetostatic models allow the fulfillment of both the kinematics and the statics design criteria of micro-motion stages. A precise kinetostatic model of compliant micro-motion stages will benefit researchers in at least the design and optimisation phases where a good estimation of kinematics, workspace or stiffness of micro-motion stages could be realised. The kinetostatic model is also an alternative method to the finite-element approach which uses commercially available software. The modelling and meshing procedures using finite-element software could be time consuming. The kinetostatic model of micro-motion stages wasdeveloped based on the theory of the connection of serial and parallel springs. developed based on the theory of the connection of serial and parallel springs. The derivation of the kinetostatic model is simple and the model is expressed in closed-form equations. Material properties and link parameters are variables in this model. Compliances of flexure hinges are also one of the variables in the model. Therefore the most suitable flexure hinge equation can be selected based on the scheme aforementioned in order to calculate the kinetostatics of micro-motion stages accurately. Planar micro-motion stages with topologies of a four-bar linkage and a 3-RRR (revolute-revolute-revolute) structure were studied in this thesis. These micromotion stages are monolithic compliant mechanisms which consist of circular flexure hinges. Circular flexure hinges are used in most of the micro-motion stages which require high positioning accuracies. This is because circular flexure hinges provide predominantly rotational motions about one axis and they have small parasitic motions about the other axes. The 3-RRR micro-motion stage studied in this thesis has three-degrees-of-freedom (DOF). The 3-RRR stage consists of three RRR linkages and each RRR linkage has three circular flexure hinges. A Pseudo-Rigid-Body-Model (PRBM), a kinetostatic model and a two-dimensional finite-elementanalysis (FEA) model generated using ANSYS of micro-motion stages are presented and the results of these models were compared. Advantages of the kinetostatic model was highlighted through this comparison. Finally, experiments are presented to verify the accuracy of the kinetostatic model of the 3-RRR micromotion stage. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1289361 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2007

Page generated in 0.1274 seconds