• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Computational Assessment of Lisfranc Injuries and their Surgical Repairs

Perez, Michael 01 January 2019 (has links)
While Lisfranc injuries in the mid foot are less common than other ankle and mid foot injuries, they pose challenges in both properly identifying them and treating them. When Lisfranc injuries are ligamentous and do not include obvious fractures, they are very challenging for clinicians to identify unless weight bearing radiographs are used. The result is that 20%-40% of Lisfranc injuries are missed in the initial evaluation. Even when injuries are correctly identified the outcomes of surgical procedures remain poor. Existing literature has compared the different surgical procedures but has not had a standard approach or procedures across studies. This study uses a computational biomechanical model validated on a cadaveric study to evaluate factors that impact injury presentation and to compare the different procedures ability to stabilize the Lisfranc joint after an injury. Using SolidWorks® a rigid body kinematic model of a healthy human foot was created whereby the 3D bony anatomy, articular contacts, and soft tissue restraints guided biomechanical function under the action of external perturbations and muscle forces. The model was validated on a cadaveric study to ensure it matched the behavior of a healthy Lisfranc joint and one with a ligamentous injury. The validated model was then extended to incorporate muscle forces and different foot orientations when simulating a weight bearing radiograph. The last section of work was to compare the stability of four different surgical repairs for Lisfranc injuries. These procedures were three open reduction and internal fixation (ORIF) procedures with different hardware (screws, screws and dorsal plates, and endobuttons) and primary arthrodesis with screws. They required use of finite element analysis which was performed in Ansys Workbench. For the presentation of injuries, both muscle forces and standing with inversion or eversion could reduce the diastasis (separation) observed for weight bearing radiographs and thus confuse the diagnosis. When comparing the different surgical procedures, the ORIF with screws and primary arthrodesis with screws showed the most stable post-operative Lisfranc joint. However, the use of cannulated screws for fixation showed regions of high stress that may be susceptible to breakage. A challenge in the literature has been the use of different experimental designs and metrics when comparing two of the possible procedures for a Lisfranc injury head to head. This study has been able to benchmark four procedures using the same model and set of metrics. Since none of the existing procedures showed consistently good to excellent patient outcomes, more procedures could be proposed in the future. If this were to occur, this study offers a standard procedure for benchmarking the new procedure’s post-operative mechanical stability versus those procedures currently in use.
2

Multicellular Biomechanical Simulation of Tissue Morphogenesis / 組織の形態形成過程における多細胞バイオメカニクスシミュレーション

Okuda, Satoru 25 March 2013 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第17557号 / 工博第3716号 / 新制||工||1566(附属図書館) / 30323 / 京都大学大学院工学研究科マイクロエンジニアリング専攻 / (主査)教授 安達 泰治, 教授 楠見 明弘, 准教授 井上 康博, 教授 琵琶 志朗 / 学位規則第4条第1項該当
3

Investigation of W-Beam Energy-Absorbing Guardrail End Terminal Safety Performance Using Finite Element Modeling

Meng, Yunzhu 23 August 2022 (has links)
Guardrails were designed to deter vehicle access to off-road areas and consequently prevent hitting rigid fixed object alongside the road (e.g., trees, utility poles, traffic barriers, etc.). However, guardrails cause 10% of deaths of vehicle-to-fixed object crashes which has attracted attention in the highway safety community on the vehicle-based injury criteria used in guardrail regulations. The objectives of this study were 1) to develop and validate a Finite Element (FE) model of the ET-Plus, a commonly used energy-absorbing guardrail end terminal; 2) to examine the conditions of in-service end terminals, and to evaluate the performance of the damaged relative to undamaged end terminals in simulated impacts; 3) to investigate both full-body and body region driver injury probabilities during car-to-end terminal crashes using dummy and human body FE models; to analyze the relationship between the vehicle-based crash severity metrics used currently in regulations and the injury probabilities assessed using biomechanics injury criteria; and 4) to quantify the influence of pre-impact conditions on injury probabilities. In this dissertation, an ET-Plus FE model was developed based on publicly available data on ET-Plus dimensions and material properties. The model was validated against the NCHRP-350 crash tests. The developed ET-Plus model was used to develop to five damaged ET-Plus whose damage patterns were identified based on an investigation of in-service end terminals mounted along U.S. roads. It was observed that damaged end terminals usually increase collision severity compared to undamaged end terminals. Meanwhile, a total of 40 FE impact simulations between a car with a dummy/human body model in the driver seat and an end terminal model were performed in various configurations. The vehicle-based severity metrics were observed to be correlated to full-body and certain body-region injury risks while no head injury risk could be predicted. The results pointed out that more advanced vehicle-based metrics should be proposed and investigated to improve the predictability in terms of occupant injury risks in the crash tests. The simulation models could also supplement crash compliance tests of new hardware designs, by investigating their safety performance for a large variety of pre-impact conditions, observed in traffic accidents, but not included the compliance tests. / Doctor of Philosophy / Guardrails were designed to deter vehicle access to off-road areas and consequently prevent hitting rigid fixed object alongside the road (e.g., trees, utility poles, traffic barriers, etc.). However, guardrails cause 10% of deaths of vehicle-to-fixed object crashes which has attracted attention in the highway safety community on the vehicle-based injury criteria used in guardrail regulations. The objectives of this study were 1) to develop and validate a Finite Element (FE) model of the ET-Plus, a commonly used energy-absorbing guardrail end terminal; 2) to examine the conditions of in-service end terminals, and to evaluate the performance of the damaged relative to undamaged end terminals in simulated impacts; 3) to investigate both full-body and body region driver injury probabilities during car-to-end terminal crashes using dummy and human body FE models; to analyze the relationship between the vehicle-based crash severity metrics used currently in regulations and the injury probabilities assessed using biomechanics injury criteria; and 4) to quantify the influence of pre-impact conditions on injury probabilities. In this dissertation, an ET-Plus FE model was developed based on publicly available data on ET-Plus dimensions and material properties. The model was validated against the NCHRP-350 crash tests. The developed ET-Plus model was used to develop to five damaged ET-Plus whose damage patterns were identified based on an investigation of in-service end terminals mounted along U.S. roads. It was observed that damaged end terminals usually increase collision severity compared to undamaged end terminals. Meanwhile, a total of 40 FE impact simulations between a car with a dummy/human body model in the driver seat and an end terminal model were performed in various configurations. The vehicle-based severity metrics were observed to be correlated to full-body and certain body-region injury risks while no head injury risk could be predicted. The results pointed out that more advanced vehicle-based metrics should be proposed and investigated to improve the predictability in terms of occupant injury risks in the crash tests. The simulation models could also supplement crash compliance tests of new hardware designs, by investigating their safety performance for a large variety of pre-impact conditions, observed in traffic accidents, but not included the compliance tests.
4

Development and Validation of Human Body Finite Element Models for Pedestrian Protection

Pak, Wansoo 21 October 2019 (has links)
The pedestrian is one of the most vulnerable road users. According to the World Health Organization (WHO), traffic accidents cause about 1.34 million fatalities annually across the world. This is the eighth leading cause of death across all age groups. Among these fatalities, pedestrians represent 23% (world), 27% (Europe), 40% (Africa), 34% (Eastern Mediterranean), and 22% (Americas) of total traffic deaths. In the United States, approximately 6,227 pedestrians were killed in road crashes in 2018, the highest number in nearly three decades. To protect pedestrians during Car-to-Pedestrian Collisions (CPC), subsystem impact tests, using impactors corresponding to the pedestrian's head and upper/lower leg were included in regulations. However, these simple impact tests cannot capture the complex vehicle-pedestrian interaction, nor the pedestrian injury mechanisms, which are crucial to understanding pedestrian kinetics/kinematics responses in CPC accidents. Numerous variables influence injury variation during vehicle-pedestrian interactions, but current test procedures only require testing in the limited scenarios that mostly focus on the anthropometry of the 50th percentile male subject. This test procedure cannot be applied to real-world accidents nor the entire pedestrian population due to the incredibly specific nature of the testing. To better understand the injury mechanisms of pedestrians and improve the test protocols, more pre-impact variables should be considered in order to protect pedestrians in various accident scenarios. In this study, simplified finite element (FE) models corresponding to 5th percentile female (F05), 50th percentile male (M50), and 95th percentile male (M95) pedestrians were developed and validated in order to investigate the kinetics and kinematics of pedestrians in a cost-effective study. The model geometries were reconstructed from medical images and exterior scanned data corresponding to a small female, mid-sized male, and tall male volunteers, respectively. These models were validated based on post mortem human surrogate (PMHS) test data under various loading including valgus bending at knee joint, lateral/anterior-lateral impact at shoulder, pelvis, thorax, and abdomen, and lateral impact during CPC. Overall, the kinetic/kinematic responses predicted by the pedestrian FE models showed good agreement against the corresponding PMHS test data. To predict injuries from the tissue level up to the full-body, detailed pedestrian models, including sophisticated musculoskeletal system and internal organs, were developed and validated as well. Similar validations were performed on the detailed pedestrian models and showed high-biofidelic responses against the PMHS test data. After model development and validation, the effect of pre-impact variables, such as anthropometry, pedestrian posture, and vehicle type in CPC impacts were investigated in different impact scenarios. The M50-PS model's posture was modified to replicate pedestrian gait posture. Five models were developed to demonstrate pedestrian posture in 0, 20, 40, 60, and 80 % of the gait cycle. In a sensitivity study, the 50th percentile male pedestrian simplified (M50-PS) model in gait predicted various kinematic responses as well as the injury outcomes in CPC impact with different vehicle type. The pedestrian FE models developed in this work have the capability to reproduce the kinetic/kinematic responses of pedestrians and to predict injury outcomes in various CPC impact scenarios. Therefore, this work could be used to improve the design of new vehicles and current pedestrian test procedures, which eventually may reduce pedestrian fatalities in traffic accidents. / Doctor of Philosophy / The pedestrian is one of the most vulnerable road users. According to the World Health Organization, traffic accidents cause about 1.34 million fatalities annually across the world. This is the eighth leading cause of death across all age groups. Among these fatalities, pedestrians represent 23% (world), 27% (Europe), 40% (Africa), 34% (Eastern Mediterranean), and 22% (Americas) of total traffic deaths. In the United States, approximately 6,227 pedestrians were killed in road crashes in 2018, the highest number in nearly three decades. To protect pedestrians in traffic accidents, subsystem impact tests, using impactors corresponding to the pedestrian’s head and upper/lower leg were included in regulations. However, these simple impact tests cannot capture the complex vehicle-pedestrian interaction, nor the pedestrian injury mechanisms, which are crucial to understanding pedestrian kinetics/kinematics responses in traffic accidents. Numerous variables influence injury variation during vehicle-pedestrian interactions, but current test procedures only require testing in the limited scenarios that mostly focus on the anthropometry of the average male subject. This test procedure cannot be applied to real-world accidents nor the entire pedestrian population due to the incredibly specific nature of the testing. To better understand the injury mechanisms of pedestrians and improve the test protocols, more pre-impact variables should be considered in order to protect pedestrians in various accident scenarios. In this study, simplified pedestrian computational models corresponding to small female, average male, and large male pedestrians were developed and validated in order to investigate the kinetics and kinematics of pedestrians in a cost-effective study. Overall, the kinetic/kinematic responses predicted by the pedestrian models showed good agreement against the corresponding test data. To predict injuries from the tissue level up to the full-body, detailed pedestrian computational models, including sophisticated musculoskeletal system and internal organs, were developed and validated as well. Similar validations were performed on the detailed pedestrian models and showed high-biofidelic responses against the test data. After model development and validation, the pre-impact variables were examined using the average male pedestrian model, which was modified the position to replicate pedestrian gait posture. In a sensitivity study, the average male pedestrian model in gait predicted various kinematic responses as well as the injury outcomes in lateral impact with different vehicle types. The pedestrian models developed in this work have the capability to reproduce the kinetic/kinematic responses of pedestrian and to predict injury outcomes in various pedestrian impact scenarios. Therefore, this work could be used to improve the design of new vehicles and current pedestrian test procedures, which eventually many reduce pedestrian fatalities in traffic accidents.
5

密度を設計変数に用いた形状適合問題の解法

AZEGAMI, Hideyuki, KOKURA, Akihiro, 畦上, 秀幸, 小倉, 章弘 12 1900 (has links)
No description available.
6

Finite element formulation and analysis for an arterial wall with residual and active stresses / 残留応力及び能動的応力を考慮した動脈壁の有限要素定式化と解析

Kida, Naoki 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18459号 / 医博第3914号 / 新制||医||1005(附属図書館) / 31337 / 京都大学大学院医学研究科医学専攻 / (主査)教授 木村 剛, 教授 坂田 隆造, 教授 戸口田 淳也 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DGAM
7

Computational Biomechanics in Cross-country Skiing

Holmberg, Joakim L. January 2008 (has links)
Traditionally, research on cross‐country skiing biomechanics is based mainly on experimental testing alone. Trying a different approach, this thesis explores the possibilities of using computational musculoskeletal biomechanics for cross‐country skiing. As far as the author knows, this has not been done before. Cross‐country skiing is both fast and powerful, and the whole body is used to generate movement. Consequently, the computational method used needs to be able to handle a full‐body model with lots of muscles. This thesis presents several simulation models created in the AnyBody Modeling System, which is based on inverse dynamics and static optimization. This method allows for measurementdriven full‐body models with hundreds of muscles and rigid body segments of all major body parts. A major result shown in the thesis is that with a good simulation model it is possible to predict muscle activation. Even though there is no claim of full validity of the simulation models, this result opens up a wide range of possibilities for computational musculoskeletal biomechanics in cross‐country skiing. Two example of new possibilities are shown in the thesis, finding antagonistic muscle pairs and muscle load distribution differences in different skiing styles. Being able to perform optimization studies and asking and answering “what if”‐questions really gives computational methods an edge compared to traditional testing. To conclude, a combination of computational and experimental methods seems to be the next logical step to increase the understanding of the biomechanics of crosscountry skiing. / Traditionellt har biomekaniska forskningsstudier av längdskidåkning baserats helt och hållet på experimentella metoder. För att prova ett annat angreppssätt undersöks i denna avhandling vilka möjligheter som beräkningsbaserad biomekanik kan ge för längdskidåkning. Så vida författaren vet, har detta inte gjorts tidigare. Längdskidåkning innehåller snabba och kraftfulla helkroppsrörelser och därför behövs en beräkningsmetod som kan hantera helkroppsmodeller med många muskler. Avhandlingen presenterar flera simuleringsmodeller skapade i AnyBody Modeling System, som baseras på inversdynamik och statisk optimering. Denna metod tillåter helkroppsmodeller med hundratals muskler och stelkroppssegment av de flesta kroppsdelarna. Ett resultat som avhandlingen visar är att med en bra simuleringsmodell är det möjligt att förutsäga muskelaktiviteten för en viss rörelse och belastning på kroppen. Även om ingen validering av simuleringsmodellen ges, så visar ändå resultatet att beräkningsbaserad biomekanik ger många nya möjligheter till forskningsstudier av längdskidåkning. Två exempel visas, hur muskelantagonister kan hittas samt hur lastfördelningen mellan musklerna förändras då skidåkaren förändrar stilen. Att kunna genomföra optimeringsstudier samt fråga och svara på ”vad händer om”‐ frågor ger beräkningsbaserad biomekanik en fördel i jämförelse med traditionell testning. Slutsatsen är att en kombination av beräkningsbaserade och experimentella metoder borde vara nästa steg för att addera insikt om längdskidåkningens biomekanik. / <p>Report code: LIU‐TEK‐LIC‐2008:4. On the day of the defence date the status of article V was: Submitted.</p>
8

Computational Biomechanics in Cross‐country Skiing

Holmberg, Joakim L. January 2008 (has links)
<p>Traditionally, research on cross‐country skiing biomechanics is based mainly on experimental testing alone. Trying a different approach, this thesis explores the possibilities of using computational musculoskeletal biomechanics for cross‐country skiing. As far as the author knows, this has not been done before.</p><p>Cross‐country skiing is both fast and powerful, and the whole body is used to generate movement. Consequently, the computational method used needs to be able to handle a full‐body model with lots of muscles. This thesis presents several simulation models created in the AnyBody Modeling System, which is based on inverse dynamics and static optimization. This method allows for measurementdriven full‐body models with hundreds of muscles and rigid body segments of all major body parts.</p><p>A major result shown in the thesis is that with a good simulation model it is possible to predict muscle activation. Even though there is no claim of full validity of the simulation models, this result opens up a wide range of possibilities for computational musculoskeletal biomechanics in cross‐country skiing. Two example of new possibilities are shown in the thesis, finding antagonistic muscle pairs and muscle load distribution differences in different skiing styles. Being able to perform optimization studies and asking and answering “what if”‐questions really gives computational methods an edge compared to traditional testing.</p><p>To conclude, a combination of computational and experimental methods seems to be the next logical step to increase the understanding of the biomechanics of crosscountry skiing.</p> / <p>Traditionellt har biomekaniska forskningsstudier av längdskidåkning baserats helt och hållet på experimentella metoder. För att prova ett annat angreppssätt undersöks i denna avhandling vilka möjligheter som beräkningsbaserad biomekanik kan ge för längdskidåkning. Så vida författaren vet, har detta inte gjorts tidigare.</p><p>Längdskidåkning innehåller snabba och kraftfulla helkroppsrörelser och därför behövs en beräkningsmetod som kan hantera helkroppsmodeller med många muskler. Avhandlingen presenterar flera simuleringsmodeller skapade i AnyBody Modeling System, som baseras på inversdynamik och statisk optimering. Denna metod tillåter helkroppsmodeller med hundratals muskler och stelkroppssegment av de flesta kroppsdelarna.</p><p>Ett resultat som avhandlingen visar är att med en bra simuleringsmodell är det möjligt att förutsäga muskelaktiviteten för en viss rörelse och belastning på kroppen. Även om ingen validering av simuleringsmodellen ges, så visar ändå resultatet att beräkningsbaserad biomekanik ger många nya möjligheter till forskningsstudier av längdskidåkning. Två exempel visas, hur muskelantagonister kan hittas samt hur lastfördelningen mellan musklerna förändras då skidåkaren förändrar stilen. Att kunna genomföra optimeringsstudier samt fråga och svara på ”vad händer om”‐ frågor ger beräkningsbaserad biomekanik en fördel i jämförelse med traditionell testning.</p><p>Slutsatsen är att en kombination av beräkningsbaserade och experimentella metoder borde vara nästa steg för att addera insikt om längdskidåkningens biomekanik.</p> / Report code: LIU‐TEK‐LIC‐2008:4. On the day of the defence date the status of article V was: Submitted.
9

Εμβιομηχανική μελέτη τάσεων και παραμορφώσεων σε μηριαίο οστούν φέροντος ενδομυελικό ήλο τύπου Fi, με τη μέθοδο των πεπερασμένων στοιχείων

Κασελούρης, Ευάγγελος 19 February 2009 (has links)
Τα τροχαντήρια ενδομυελικά εμφυτεύματα τύπου Fi χρησιμοποιούνται σε περιπτώσεις μη σταθερών διατροχαντήριων καταγμάτων του ισχίου. Από κλινικής άποψης, δύο βασικά προβλήματα που αφορούν την αποτελεσματικότητα της χρήσης του ενδομυελικού εμφυτεύματος τύπου Fi είναι: ποια είναι η βέλτιστη θέση εισαγωγής της περιφερικής βίδας και το εάν πρέπει να χρησιμοποιηθεί μία περιφερική βίδα ή ένα ζεύγος περιφερικών βιδών. Προκειμένου να μελετηθούν οι επιδράσεις αυτών των δύο παραμέτρων, ένα σύνολο απλοποιημένων και πλήρως ολοκληρωμένων μοντέλων μοντέλων αναπτύχθηκαν και αναλύθηκαν με τη Μέθοδο των Πεπερασμένων Στοιχείων (ΜΠΣ). Η ανάλυση με χρήση της Μεθόδου των Πεπερασμένων Στοιχείων (ΜΠΣ) μπορεί να δώσει σημαντικές πληροφορίες που αφορούν στην ευαισθησία της συμπεριφοράς του εμφυτεύματος σε σχέση με τα άλλα τμήματα της κατασκευής του εμφυτεύματος (ήλος, lag βίδα, περιφερική βίδα). Σκοπός της εργασίας αυτής είναι η εύρεση της επίδρασης της θέσης της περιφερικής βίδας (των θέσεων των περιφερικών βιδών) στη μηχανική συμπεριφορά του συναρμολογήματος μηριαίου οστού/ενδομυελικού ήλου, όταν: 1.έχει ολοκληρωθεί η ενδομυελική οστεοσύνθεση 2.έχει διαγνωσθεί τυπικό διατροχαντήριο κάταγμα τύπου 31-Α1.3 κατά Müller AO/ASIF. / Trochanteric Fi-nail intramedullary fixation devices are used in cases of unstable intertrochanteric hip fractures. From a clinical point of view, two questions of high importance concerning the efficiency of the Fi-nail approach refer to where to put the distal screws and whether a single distal screw or a pair of distal screws should be used. In order to disclose the effect of those two parameters, a series of models were developed and then analyzed with the Finite Element Method (FEM). Finite element analysis can offer valuable information concerning the sensitivity of the implant’s behaviour in relation to the other parts of the implant’s structure (nail, lag screw, distal screw). The aim of this study is to examine the influence of the distal screw’s position in the mechanical behaviour of the femur/Fi-nail assembly: 1.when the intramedullary osteosynthesis has already been completed (case of healed femur) 2.when a typical intertrochanteric fracture (type 31-Α1.3, according to Müller AO/ASIF) has been diagnosed.
10

MULTIDISCIPLINARY TECHNIQUES FOR THE SIMULATION OF THE CONTACT BETWEEN THE FOOT AND THE SHOE UPPER IN GAIT: VIRTUAL REALITY, COMPUTATIONAL BIOMECHANICS, AND ARTIFICIAL NEURAL NETWORKS

Rupérez Moreno, María José 20 July 2011 (has links)
Esta Tesis propone el uso de técnicas multidisciplinares como una alternativa viable a los procedimientos actuales de evaluación del calzado los cuales, normalmente, consumen muchos recursos humanos y técnicos. Estas técnicas son Realidad Virtual, Biomecánica Computacional y Redes Neuronales Artificiales. El marco de esta tesis es el análisis virtual del confort mecánico en el calzado, es decir, el análisis de las presiones de confort en el calzado y su principal objetivo es predecir las presiones ejercidas por el zapato sobre la superficie del pie al caminar mediante la simulación del contacto en esta interfaz. En particular, en esta tesis se ha desarrollado una aplicación software que usa el Método de los Elementos Finitos para simular la deformación del calzado. Se ha desarrollado un modelo preliminar que describe el comportamiento del corte del calzado, se ha implementado un proceso automático para el ajuste pie-zapato y se ha presentado una metodología para obtener una animación genérica del paso de cada individuo. Además, y con el fin de mejorar la aplicación desarrollada, se han propuesto nuevos modelos para simular el comportamiento del corte del calzado al caminar. Por otro lado, las Redes Neuronales Artificiales han sido aplicadas en esta tesis a la predicción de la fuerza ejercida por una esfera, que simulando un hueso, empuja a una muestra de material. Además, también han sido utilizadas para predecir las presiones ejercidas por el corte del calzado sobre la superficie del pie (presiones dorsales) en un paso completo. Las principales contribuciones de esta tesis son: el desarrollo de un innovador simulador que permitirá a los fabricantes de calzado realizar evaluaciones virtuales de las características de sus diseños sin tener que construir el prototipo real, y el desarrollo de una también innovadora herramienta que les permitirá predecir las presiones dorsales ejercidas por el calzado sobre la superficie del pie al caminar. / Rupérez Moreno, MJ. (2011). MULTIDISCIPLINARY TECHNIQUES FOR THE SIMULATION OF THE CONTACT BETWEEN THE FOOT AND THE SHOE UPPER IN GAIT: VIRTUAL REALITY, COMPUTATIONAL BIOMECHANICS, AND ARTIFICIAL NEURAL NETWORKS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11235 / Palancia

Page generated in 0.15 seconds