• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 27
  • 27
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 7
  • 7
  • 7
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

RNA Recognition by the Caenorhabditis elegans Embryonic Determinants MEX-5 and MEX-3: A Dissertation

Pagano, John M., Jr. 01 June 2010 (has links)
Post-transcriptional regulation of gene expression is a mechanism that governs developmental and cellular events in metazoans. In early embryogenesis, transcriptionally quiescent cells depend upon maternally supplied factors such as RNA binding proteins and RNA that control key decisions. Morphogen gradients form and in turn pattern the early embryo generating different cell types and spatial order. In the nematode Caenorhabditis elegans, the early embryo relies upon several RNA binding proteins that control mRNA stability, translation efficiency, and/or mRNA localization of cell fate determinants essential for proper development. MEX-5 and MEX-3 are two conserved RNA-binding proteins required to pattern the anterior/posterior axis and early embryo. Mutation of either gene results in a maternal effect lethal phenotype with proliferating posterior muscle into the anterior blastomeres (Muscle EXcess). Several cell-fate determinants are aberrantly expressed in mex-5 and mex-3 embryos. Both proteins are thought to interact with cis-regulatory elements present in 3’-UTRs of target RNAs controlling their metabolism. However, previous studies failed to demonstrate that these proteins regulate maternal transcripts directly. This dissertation presents a thorough assessment of the RNA binding properties of MEX-5 and MEX-3. Quantitative biochemical approaches were used to determine the RNA binding specificity of both proteins. MEX-5 has a relaxed specificity, binding with high affinity to linear RNA containing a tract of six or more uridines within an eight-nucleotide window. This is very different from its mammalian homologs Tristetraprolin (TTP) and ERF-2. I was able to identify two amino acids present within the MEX-5 RNA binding domain that are required for the differential RNA recognition observed between MEX-5 and TTP. MEX-3 on the other hand is a specific RNA binding protein, recognizing a bipartite element with flexible spacing between two four-nucleotide half-sites. I demonstrate that this element is required for MEX-3 dependent regulation in vivo. Previous studies only identify a small number of candidate regulatory targets of MEX-5 and MEX-3. The defined sequence specificity of both proteins is used to predict new putative targets that may be regulated by either protein. Collectively, this study examines the RNA binding properties of MEX-5 and MEX-3 to clarify their role as post-transcriptional regulators in nematode development.
22

Clinically Relevant Doses of Chemotherapy Drugs Selectively and Reversibly Block Glioblastoma Neurosphere Proliferation in vitro: A Dissertation

Mihaliak, Alicia M. 28 June 2010 (has links)
My thesis research began with a project in which we were trying to determine the function of embryonic stem cell (ESC)-specific miRNAs. Using luciferase constructs containing miRNA binding sites, luciferase expression was inhibited by endogenous miRNAs in ESCs, and by exogenous miRNAs in HeLa cells. Inhibition of luciferase expression by miRNAs was inhibited in HeLa cells using 2’O-methyl-oligonucleotides. In ESCs, 2’O-methyl-oligonucleotides were only effective in partially inhibiting miR290 function. Partial inhibition of miR290 did not result in any obvious phenotypic changes in mESCs. Later studies using 2’O-methyl-oligonucleotides in ESCs were also unsuccessful. The function of ESC-specific miRNAs has since been studied by re-introducing miRNAs into Dicer -/- cells which cannot make miRNAs. These studies have shown that ESC-specific miRNAs are involved in de novo DNA methylation, self-renewal, and cell-cycle regulation. Newly diagnosed glioblastoma (GBM) patients rarely survive more than two years even after surgery, radiotherapy, and chemotherapy using temozolomide (TMZ) or 1,3-bis(2-chloroethy)-1-nitrosourea (BCNU). Eventual regrowth of the tumor indicates that some tumor cells are resistant to therapy. GBM neurosphere-initiating cells (NICs) are thought to be similar to tumor-initiating cells in vivo, and will form invasive tumors in mice, making neurosphere cultures a good model system for studying GBMs. To test whether GBM NICs were resistant to chemotherapy, we used a neurosphere formation assay to measure the number of proliferating NICs in the presence of TMZ or BCNU. The concentrations of chemotherapy drugs required to inhibit neurosphere formation were much less than those required to inhibit bulk cell proliferation or to induce cell death in our neurosphere cultures. For some cultures, there was a robust recovery of neurosphere formation after chemotherapy treatment which appeared to be DNA damage independent. Some of the cultures that showed significant recovery of neurosphere formation underwent reversible cell cycle arrest, possibly reducing chemotoxicity in these cultures. Collectively, these results indicate that GBM neurosphere cultures can regrow after being treated with clinically relevant doses of chemotherapy drugs. Chemotherapy-treated neurosphere cultures remained viable, and formed tumors when injected into mice. Our experiments show that these in vitro assays may be useful in predicting in vivo responses to chemotherapeutic agents.
23

Mitotic Response to DNA Damage in Early Drosophila Embroyos: a Dissertation

Kwak, Seongae 30 April 2008 (has links)
DNA damage induces mitotic exit delays through a process that requires the spindle assembly checkpoint (SAC), which blocks the metaphase to anaphase transition in the presence of unaligned chromosomes. Using time-lapse confocal microscopy in syncytial Drosophila embryos, we show that DNA damage leads to arrest during prometaphase and anaphase. In addition, functional GFP fusions to the SAC components MAD2 and Mps1, and the SAC target Cdc20 relocalize to kinetochore through anaphase arrest, and a null mad2mutation blocks damage induced prometaphase and anaphase arrest. We also show that the DNA damage signaling kinase Chk2 is required for damage induced metaphase and anaphase arrest, and that a functional GFP-Chk2 fusion localizes to kinetochores and centrosomes through mitosis. In addition, in the absence of Chk2, we find that DNA damage sufficient to fragment centromere DNA does not delay mitotic exit. We conclude that DNA damage signaling through Chk2 triggers Mad2-dependent delays in mitotic progression, both before or after the metaphase-anaphase transition.
24

Analysis of Polarity Signaling in Both Early Embryogenesis and Germline Development in C. Elegans: A Dissertation

Bei, Yanxia 18 January 2005 (has links)
In a 4-cell C. elegans embryo the ventral blastomere EMS requires polarity signaling from its posterior sister cell, P2. This signaling event enables EMS to orient its division spindle along the anterior-posterior (A/P) axis and to specify the endoderm fate of its posterior daughter cell, E. Wnt pathway components have been implicated in mediating P2/EMS signaling. However, no single mutants or various mutant combinations of the Wnt pathway components disrupt EMS polarity completely. Here we describe the identification of a pathway that is defined by two tyrosine kinase related proteins, SRC-1 and MES-1, which function in parallel with Wnt signaling to specify endoderm and to orient the division axis of EMS. We show that SRC-1, a C. elegans homolog of c-Src, functions downstream of MES-1 to specifically enhance phosphotyrosine accumulation at the P2/EMS junction in order to control cell fate and mitotic spindle orientation in both the P2 and EMS cells. In the canonical Wnt pathway, GSK-3 is conserved across species and acts as a negative regulator. However, in C. elegans we find that GSK-3 functions in a positive manner and in parallel with other components in the Wnt pathway to specify endoderm during embryogenesis. In addition, we also show that GSK-3 regulates C. elegans germline development, a function of GSK-3 that is not associated with Wnt signaling. It is required for the differentiation of somatic gonadal cells as well as the regulation of meiotic cell cycle in germ cells. Our results indicate that GSK-3 modulates multiple signaling pathways to regulate both embryogenesis and germline development in C. elegans.
25

piRNA Function and Biogenesis in the <em>Drosophila</em> Female Germline: A Dissertation

Klattenhoff, Carla Andrea 20 November 2008 (has links)
The studies presented in this thesis addressed mainly two aspects of Piwi-interacting RNA (piRNA) biology in the Drosophilagermline. We investigated the role of the piRNA pathway in embryonic axis specification. piRNAs mediate silencing of retrotransposons and the Stellate locus. Mutations in the Drosophila piRNA pathway genes armitage and aubergine disrupt embryonic axis specification, triggering defects in microtubule polarization and asymmetric localization of mRNA and protein determinants in the developing oocyte. Mutations in the ATR/Chk2 DNA damage signal transduction pathway dramatically suppress these axis specification defects, but do not restore retrotransposon or Stellatesilencing. Furthermore, piRNA pathway mutations lead to germline-specific accumulation of γ-H2Av foci characteristic of DNA damage. We conclude that piRNA based gene silencing is not required for axis specification, and that the critical developmental function for this pathway is to suppress DNA damage signaling in the germline. We have also identified a new member of the piRNA pathway. We show that mutations in rhino, which encodes a rapidly evolving Heterochromatin Protein 1 (HP1) chromo box protein, lead to germline specific DNA break accumulation, trigger Chk2 kinase dependent defects in axis specification, and disrupt germline localization of Piwi proteins. Mutations in rhino and the piRNA pathway gene armitage disrupt silencing of all major transposon families, but do not alter expression of euchromatic or heterochromatic protein coding genes. Deep sequencing studies show that rhino mutations significantly reduce or eliminate anti-sense piRNAs derived from the majority of transposable elements in the Drosophila genome, and lead to a dramatic reduction in piRNAs derived from major piRNA production clusters on chromosomes 2R and 4. Rhino protein localizes to distinct nuclear foci, and associates with the chromosome 2R and 4 clusters by chromatin immunoprecipitation. The Rhino HP1 homologue is therefore required for piRNA biogenesis, transposon silencing, and maintenance of germline genome integrity.
26

Sequence and Target Specificity of the C. elegans Cell Fate Specification Factor POS-1: A Dissertation

Farley, Brian M. 09 August 2012 (has links)
In most metazoans, early embryogenesis is controlled by the translational regulation of maternally supplied mRNA. Sequence-specific RNA-binding proteins play an important role in regulating early embryogenesis, yet their specificities and regulatory targets are largely unknown. To understand how these RNA-binding proteins select their targets, my research focused on the C. elegans CCCH-type tandem zinc finger protein POS-1. Embryos lacking maternally supplied POS-1 die prior to gastrulation, and exhibit defects in the specification of pharyngeal, intestinal, and germline precursor cells. To identify the regulatory targets that contribute to the POS-1 mutant phenotype, we set out to determine the sequence specificity of POS-1 in vitro, and then use this information to identify regulatory targets in vivo. Using a candidate-based search, we identified a twelve-nucleotide fragment of the mex-3 3' untranslated region (3' UTR) to which POS-1 binds with high affinity. Using quantitative fluorescent electrophoretic mobility shift assays, I determined the affinity of the RNA-binding domain of POS-1 for a panel of single nucleotide mutations of this sequence, and then defined a consensus binding element based on this dataset. POS-1 recognizes the degenerate element UAU 2-3 RDN 1-3 G, where R is any purine (adenosine or guanine), and D is any base except cytosine. A bioinformatics analysis revealed the presence of this element in approximately 40% of C. elegans 3' UTRs, suggesting that POS-1 is capable of binding to and perhaps regulating many transcripts in vivo. POS-1 binding sites alone are not sufficient to pattern the expression of a reporter, suggesting that other factors may contribute to POS-1 specificity. To address the mechanism of POS-1-mediated translational regulation, I investigated the translational regulation of the C. elegans Notch homolog glp-1. Previous work demonstrated that glp-1 translation is repressed in the early embryo in a POS-1-dependent fashion, though it was not clear if this regulation was direct. The glp-1 3' UTR contains two POS-1 binding sites within five nucleotides of each other, and these sites are within a thirty nucleotide region of the 3' UTR required for proper spatiotemporal translation of glp-1. The POS-1 sites overlap with a negative regulatory element that is recognized by GLD-1, and a positive regulatory element recognized by an unknown factor. Both POS-1 and GLD-1 bind to an RNA containing these sites in vitro, and POS-1 competes with GLD-1 for binding. Both proteins are required for translational repression of a glp-1 3' UTR reporter in embryos. Furthermore, only one of the two POS-1 binding sites is required for repression, and the required site is wholly contained within a previously characterized positive regulatory element. Based on this, we propose that POS-1 does not regulate its targets by recruiting regulatory machinery, but instead by competing with factors that do. Thus, sites of POS-1 regulation are highly context dependent, which may contribute to POS-1 specificity.
27

Neural Circuit Analyses of the Olfactory System in Drosophila: Input to Output: A Dissertation

DasGupta, Shamik 17 September 2009 (has links)
This thesis focuses on several aspects of olfactory processing in Drosophila. In chapter I and II, I will discuss how odorants are encoded in the brain. In both insects and mammals, olfactory receptor neurons (ORNs) expressing the same odorant receptor gene converge onto the same glomerulus. This topographical organization segregates incoming odor information into combinatorial maps. One prominent theory suggests that insects and mammals discriminate odors based on these distinct combinatorial spatial codes. I tested the combinatorial coding hypothesis by engineering flies that have only one class of functional ORNs and therefore cannot support combinatorial maps. These files can be taught to discriminate between two odorants that activate the single functional class of ORN and identify an odorant across a range of concentrations, demonstrating that a combinatorial code is not required to support learned odor discrimination. In addition, these data suggest that odorant identity can be encoded as temporal patterns of ORN activity. Behaviors are influenced by motivational states of the animal. Chapter III of this thesis focuses on understanding how motivational states control behavior. Appetitive memory in Drosophilaprovides an excellent system for such studies because the motivational state of hunger promotes reliance on learned appetitive cues whereas satiety suppresses it. We found that activation of neuropeptide F (dNPF) neurons in fed flies releases appetitive memory performance from satiety-mediated suppression. Through a GAL4 screen, we identified six dopaminergic neurons that are a substrate for dNPF regulation. In satiated flies, these neurons inhibit mushroom body output, thereby suppressing appetitive memory performance. Hunger promotes dNPF release, which blocks the inhibitory dopaminergic neurons. The motivational drive of hunger thus affects behavior through a hierarchical inhibitory control mechanism: satiety inhibits memory performance through a subset of dopaminergic neurons, and hunger promotes appetitive memory retrieval via dNPF-mediated disinhibition of these neurons. The aforementioned studies utilize sophisticated genetic tools for Drosophila. In chapter IV, I will talk about two new genetic tools. We developed a new technique to restrict gene expression to different subsets of mushroom body neurons with unprecedented precision. We also adapted the light-activated adenylyl cyclase (PAC) from Euglena gracilis as a light-inducable cAMP system for Drosophila. This system can be used to induce cAMP synthesis in targeted neurons in live, behaving preparations.

Page generated in 0.0664 seconds