Spelling suggestions: "subject:"2mission factors"" "subject:"2emission factors""
31 |
Submicrometre aerosol emissions from sea spray and road trafficMårtensson, Monica January 2007 (has links)
The uncertainty of the climate and health effects of aerosols is still large, one important reason being lack of knowledge of the primary emissions. This thesis combines laboratory and field experiments, and process modelling in an effort to better quantify the submicrometre aerosol emissions and to understand some of the processes in the atmosphere. A parameterisation was derived for the source flux of sea salt particles (particles m-2 s-1) in the size range 0.02-2.8 µm dry diameter (Dp), it is the first parameterisation to almost cover two full decades of the submicrometre sea salt aerosol production, and to include the effect of water temperature. This sea salt parameterisation was validated for temperate water in the 0.1-1.1 μm Dp range using in situ size resolved emissions of marine aerosol particles, which were measured with the eddy covariance (EC) method. For periods sampled air was heated to 300ºC in order to evaporate semi-volatile organics and isolate the sea salt fraction. Comparisons with the total aerosol emissions suggest that in these emissions organic carbon and sea salt are internally mixed in the same particles. Finally an aerosol dynamics model was modified for marine conditions. In the model parameterised emissions of sea salt was included together with aerosol dynamics, chemistry and clouds representative for the marine boundary layer. The sea salt emissions are together with secondary sulphate, and cloud processing able to reproduce a typical marine aerosol size distribution and cloud condensation nuclei population. Measurements with the EC method of the road traffic related aerosol source number flux for Dp>0.011 µm show that the major part of the aerosol fluxes is due to road traffic emissions. Both an emission factor for the whole fleet mix in Stockholm (1.4x1014 vehicle-1 km-1) and separate emission factors for light- and heavy-duty vehicles (HDV) were deduced. The result shows that during weekdays 70-80% of the emissions come from HDV.
|
32 |
Biomass burning : particle emissions, characteristics, and airborne measurementsWardoyo, Arinto Yudi January 2007 (has links)
Biomass burning started to attract attention since the last decade because of its impacts on the atmosphere and the environmental air quality, as well as significant potential effects on human health and global climate change. Knowledge of particle emission characteristics from biomass burning is crucially important for the quantitative assessment of the potential impacts. This thesis presents the results of study aimed towards comprehensive characterization of particle emissions from biomass burning. The study was conducted both under controlled laboratory conditions, to quantify the particle size distribution and emission factors by taking into account various factors which may affect the particle characteristics, and in the field, to investigate biomass burning processes in the real life situations and to examine vertical profile of particles in the atmosphere. To simulate different environmental conditions, a new technique has been developed for investigating particle emissions from biomass burning in the laboratory. As biomass burning may occur in a field at various wind speeds and burning rates, the technique was designed to allow adjustment of the flow rates of the air introduced into the chamber, in order to control burning under different conditions. In addition, the technique design has enabled alteration of the high particle concentrations, allowing conducting measurements with the instrumentations that had the upper concentration limits exciding the concentrations characteristic to the biomass burning. The technique was applied to characterize particle emissions from burning of several tree species common to Australian forests. The aerosol particles were characterized in terms of size distribution and emission factors, such as PM2.5 particle mass emission factor and particle number emission factor, under various burning conditions. The characteristics of particles over a range of burning phases (e.g., ignition, flaming, and smoldering) were also investigated. The results showed that particle characteristics depend on the type of tree, part of tree, and the burning rate. In particular, fast burning of the wood samples produced particles with the CMD of 60 nm during the ignition phase and 30 nm for the rest of the burning process. Slow burning of the wood samples produced large particles with the CMD of 120 nm, 60 nm and 40 nm for the ignition, flaming and smoldering phases, respectively. The CMD of particles emitted by burning the leaves and branches was found to be 50 nm for the flaming phase and 30 nm for the smoldering phase, under fast burning conditions. Under slow burning conditions, the CMD of particles was found to be between 100 to 200 nm for the ignition and flaming phase, and 50 nm for the smoldering phase. For fast burning, the average particle number emission factors were between 3.3 to 5.7 x 1015 particles/kg for wood and 0.5 to 6.9 x 1015 particles/kg for leaves and branches. The PM2.5 emission factors were between 140 to 210 mg/kg for wood and 450 to 4700 mg/kg for leaves and branches. For slow burning conditions, the average particle number emission factors were between 2.8 to 44.8 x 1013 particles/kg for wood and 0.5 to 9.3 x 1013 particles/kg for leaves and branches, and the PM2.5 emissions factors were between 120 to 480 mg/kg for wood and 3300 to 4900 mg/kg for leaves and branches. The field measurements were conducted to investigate particle emissions from biomass burning in the Northern Territory of Australia over dry seasons. The results of field studies revealed that diameters of particles in ambient air emissions were within the size range observed during laboratory investigations. The laboratory measurements found that the particles released during the controlled burning were of a diameter between 30 and 210 nm, depending on the burning conditions. Under fast burning conditions, smaller particles were produced with a diameter in the range of 30 to 60 nm, whilst larger particles, with a diameter between 60 nm and 210 nm, were produced during slow burning. The airborne field measurements of biomass particles found that most of the particles measured under the boundary layer had a CMD of (83 ± 13) nm during the early dry season (EDS), and (127 ± 6) nm during the late dry season (LDS). The characteristics of ambient particles were found to be significantly different at the EDS and the LDS due to several factors including moisture content of vegetation, location of fires related to the flight paths, intensity of fires, and burned areas. Specifically, the investigations of the vertical profiles of particles in the atmosphere have revealed significant differences in the particle properties during early dry season and late dry season. The characteristics of particle size distribution played a significant role in these differences.
|
33 |
Development of a particle number and particle mass emissions inventory for an urban fleet : a study in South-East QueenslandKeogh, Diane Underwood January 2009 (has links)
Motor vehicles are a major source of gaseous and particulate matter pollution in urban areas, particularly of ultrafine sized particles (diameters < 0.1 µm). Exposure to particulate matter has been found to be associated with serious health effects, including respiratory and cardiovascular disease, and mortality. Particle emissions generated by motor vehicles span a very broad size range (from around 0.003-10 µm) and are measured as different subsets of particle mass concentrations or particle number count. However, there exist scientific challenges in analysing and interpreting the large data sets on motor vehicle emission factors, and no understanding is available of the application of different particle metrics as a basis for air quality regulation. To date a comprehensive inventory covering the broad size range of particles emitted by motor vehicles, and which includes particle number, does not exist anywhere in the world. This thesis covers research related to four important and interrelated aspects pertaining to particulate matter generated by motor vehicle fleets. These include the derivation of suitable particle emission factors for use in transport modelling and health impact assessments; quantification of motor vehicle particle emission inventories; investigation of the particle characteristic modality within particle size distributions as a potential for developing air quality regulation; and review and synthesis of current knowledge on ultrafine particles as it relates to motor vehicles; and the application of these aspects to the quantification, control and management of motor vehicle particle emissions. In order to quantify emissions in terms of a comprehensive inventory, which covers the full size range of particles emitted by motor vehicle fleets, it was necessary to derive a suitable set of particle emission factors for different vehicle and road type combinations for particle number, particle volume, PM1, PM2.5 and PM1 (mass concentration of particles with aerodynamic diameters < 1 µm, < 2.5 µm and < 10 µm respectively). The very large data set of emission factors analysed in this study were sourced from measurement studies conducted in developed countries, and hence the derived set of emission factors are suitable for preparing inventories in other urban regions of the developed world. These emission factors are particularly useful for regions with a lack of measurement data to derive emission factors, or where experimental data are available but are of insufficient scope. The comprehensive particle emissions inventory presented in this thesis is the first published inventory of tailpipe particle emissions prepared for a motor vehicle fleet, and included the quantification of particle emissions covering the full size range of particles emitted by vehicles, based on measurement data. The inventory quantified particle emissions measured in terms of particle number and different particle mass size fractions. It was developed for the urban South-East Queensland fleet in Australia, and included testing the particle emission implications of future scenarios for different passenger and freight travel demand. The thesis also presents evidence of the usefulness of examining modality within particle size distributions as a basis for developing air quality regulations; and finds evidence to support the relevance of introducing a new PM1 mass ambient air quality standard for the majority of environments worldwide. The study found that a combination of PM1 and PM10 standards are likely to be a more discerning and suitable set of ambient air quality standards for controlling particles emitted from combustion and mechanically-generated sources, such as motor vehicles, than the current mass standards of PM2.5 and PM10. The study also reviewed and synthesized existing knowledge on ultrafine particles, with a specific focus on those originating from motor vehicles. It found that motor vehicles are significant contributors to both air pollution and ultrafine particles in urban areas, and that a standardized measurement procedure is not currently available for ultrafine particles. The review found discrepancies exist between outcomes of instrumentation used to measure ultrafine particles; that few data is available on ultrafine particle chemistry and composition, long term monitoring; characterization of their spatial and temporal distribution in urban areas; and that no inventories for particle number are available for motor vehicle fleets. This knowledge is critical for epidemiological studies and exposure-response assessment. Conclusions from this review included the recommendation that ultrafine particles in populated urban areas be considered a likely target for future air quality regulation based on particle number, due to their potential impacts on the environment. The research in this PhD thesis successfully integrated the elements needed to quantify and manage motor vehicle fleet emissions, and its novelty relates to the combining of expertise from two distinctly separate disciplines - from aerosol science and transport modelling. The new knowledge and concepts developed in this PhD research provide never before available data and methods which can be used to develop comprehensive, size-resolved inventories of motor vehicle particle emissions, and air quality regulations to control particle emissions to protect the health and well-being of current and future generations.
|
34 |
Mudanças nos estoques de carbono e nitrogênio do solo em função da conversão do uso da terra no Pará / Changes on soil carbon and nitrogen stocks due to the land use change in Pará State, BrazilMariana Regina Durigan 23 April 2013 (has links)
A atividade de mudança do uso da terra na Amazônia vem sendo apontada como principal fonte de CO2 para a atmosfera em função das emissões de C e N provenientes do solo. A prática de manejo adotada pode influenciar significativamente nos estoques de C e N do solo funcionando como dreno ou fonte de C e N para a atmosfera. Além disso, podem ser alterados: a fertilidade e a densidade do solo bem como as frações e a origem da MOS. Com o objetivo de avaliar o impacto das mudanças de uso da terra na região leste da Amazônia foram coletadas amostras de terra nos principais usos da terra na região de Santarém-PA, em três profundidades: 0-10, 10-20 e 20-30 cm. Através das amostras foi realizada a caracterização físico-química das áreas e foram determinados os teores de C e N do solo e os isótopos ? 13C e ? 15N com a finalidade de quantificar os estoques de C e N do solo e avaliar a dinâmica e origem da MOS. Para um subconjunto de amostras foi realizado o fracionamento físico da MOS e a determinação do C da biomassa microbiana para compreender como a mudança de uso da terra interferiu nessas frações. Somado a essas determinações foi realizada a estimativa dos fatores de emissão com base na metodologia descrita pelo IPCC. Através da caracterização físicoquímica as áreas de estudo são caracterizadas por solos argilosos a muito argilosos. Os maiores valores de pH, macronutrientes, CTC, SB e V% foram observados nas áreas de agricultura (AGR) sugerindo que a utilização de práticas como adubação e calagem, são capazes de alterar os padrões de fertilidade do solo na Amazônia, aumentando seus índices de fertilidade. Para os estoques de C e N pode-se dizer que a mudança de uso da terra na região estudada está contribuindo para as perdas de C e N do solo, principalmente quando a conversão é realizada para áreas de agricultura (AGR) e pastagem (PA) sendo que os estoques de C observados na camada de 0-30 cm nessas áreas foram 49,21 Mg C ha-1 (PA) e 48,60 Mg C ha-1 (AGR). O maior valor de ? 13C foi encontrado nas áreas de pastagens, -25,08?, sugerindo que para as áreas de PA existe diluição isotópica e que parte do C do solo ainda é remanescente da floresta. As frações da MOS apresentaram alterações na quantidade de C e na proporção das frações leve e oclusa, principalmente nos usos AGR e PA. A fração lábil da MOS (C da biomassa microbiana) também apresentou grande diferença entre os usos FLO e AGR (526,21 e 296,78 ?g g-1de solo seco), indicando que a AGR foi o uso que mais alterou os estoques de C e N do solo e também as frações da MOS. Os fatores de emissão calculados confirmam todos os resultados observados em relação a conversão de FLO para AGR, sendo que para esse uso o fator de emissão foi de 0,93 ± 0,033, sendo então o uso que mais emitiu C. Com base nos resultados conclui-se que a introdução de áreas agrícolas na região de Santarém, é a principal causa de perda de C e N do solo e consequentemente é o uso que mais contribui com as emissões de gases do efeito estufa. / The land use change in the Brazilian Amazon has been identified as the main source of CO2 to the atmosphere due to emissions of soil carbon and nitrogenl. The management practice adopted can strongly influence the soil C and N stocks and may works like a sink or source of C and N to the atmosphere. Furthermore, can be changed: the soil fertility and bulk density as well as the SOM fractions and C source of the SOM. With the objective of evaluate the impact of the land use change in eastern Amazonia soil samples were collected in the main land uses in Santarém region, Para State of Brazil, at three depths: 0-10, 10-20 and 20-30 cm. Through the samples was performed the physicochemical characterization of the areas and were determined the soil C and N contents as well the isotopes ? 13C and ? 15N in order to quantify the soil C and N stocks and understand the SOM dynamics and evaluate the SOM origin. For a subset of samples were performed the physical fractionation of SOM and the determination of microbial biomass C to understand how the land use change may interfere in these fractions. Added to these determinations were estimated the emission factors based on the methodology described by the IPCC. Through the physicochemical characterization study areas can be characterized as a clayey loamy soils. The highest values of pH, macronutrients, CEC , sum of bases and base saturation were observed in croplands (CP), suggesting that the use of practices such as fertilization and liming are able to change the soil fertility patterns in the Amazon, increasing their fertility. For C and N stocks can be said that the land use change in the study area is contributing to the loss of soil C and N, especially when the conversion is done for croplands (CP) and grasslands (GS) areas and the value observed for soil C stocks in the 0-30 cm layer in these areas were 49.21 Mg C ha-1 (GS) and 48.60 Mg C ha-1 (CP). The highest ? 13C value was found in GS, -25.08 ?, suggesting that for these areas is occurring an isotope dilution and that part of the soil C is still remaining from forest. The SOM fractions showed changes in the amount of C and in the proportion of light and occluded fractions, especially in the uses CP and GS. The labile SOM fractions (microbial biomass) also showed a large difference between the UF and CP uses (526.21 and 296.78 mg g-1 of dry soil), indicating that CP affects the soil C and N stocks and also the SOM fractions. The emission factors calculated confirm all results observed for the conversion of UF for CP, and for this use the emission factor was 0.93 ± 0.033, and then this was the use that emitted more C. Based on the results we conclude that the introduction of croplands in Santarem region is the main cause of soil C and N loss and consequently contributes more to the greenhouse gases emission.
|
35 |
Analysis of dispersion and propagation of fine and ultra fine particle aerosols from a busy roadGramotnev, Galina January 2007 (has links)
Nano-particle aerosols are one of the major types of air pollutants in the urban indoor and outdoor environments. Therefore, determination of mechanisms of formation, dispersion, evolution, and transformation of combustion aerosols near the major source of this type of air pollution - busy roads and road networks - is one of the most essential and urgent goals. This Thesis addresses this particular direction of research by filling in gaps in the existing physical understanding of aerosol behaviour and evolution. The applicability of the Gaussian plume model to combustion aerosols near busy roads is discussed and used for the numerical analysis of aerosol dispersion. New methods of determination of emission factors from the average fleet on a road and from different types of vehicles are developed. Strong and fast evolution processes in combustion aerosols near busy roads are discovered experimentally, interpreted, modelled, and statistically analysed. A new major mechanism of aerosol evolution based on the intensive thermal fragmentation of nano-particles is proposed, discussed and modelled. A comprehensive interpretation of mutual transformations of particle modes, a strong maximum of the total number concentration at an optimal distance from the road, increase of the proportion of small nano-particles far from the road is suggested. Modelling of the new mechanism is developed on the basis of the theory of turbulent diffusion, kinetic equations, and theory of stochastic evaporation/degradation processes. Several new powerful statistical methods of analysis are developed for comprehensive data analysis in the presence of strong turbulent mixing and stochastic fluctuations of environmental factors and parameters. These methods are based upon the moving average approach, multi-variate and canonical correlation analyses. As a result, an important new physical insight into the relationships/interactions between particle modes, atmospheric parameters and traffic conditions is presented. In particular, a new definition of particle modes as groups of particles with similar diameters, characterised by strong mutual correlations, is introduced. Likely sources of different particle modes near a busy road are identified and investigated. Strong anti-correlations between some of the particle modes are discovered and interpreted using the derived fragmentation theorem. The results obtained in this thesis will be important for accurate prediction of aerosol pollution levels in the outdoor and indoor environments, for the reliable determination of human exposure and impact of transport emissions on the environment on local and possibly global scales. This work will also be important for the development of reliable and scientifically-based national and international standards for nano-particle emissions.
|
36 |
Investigation into submicrometer particle and gaseous emissions from airport ground running proceduresMazaheri, Mandana January 2009 (has links)
Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft.
In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle.
Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data.
Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation.
The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number.
In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.
|
Page generated in 0.0647 seconds