Spelling suggestions: "subject:"emotionation detection"" "subject:"emotionation 1detection""
11 |
Multi-Object modelling of the face / Modélisation Multi-Objet du visageSalam, Hanan 20 December 2013 (has links)
Cette thèse traite la problématique liée à la modélisation du visage dans le but de l’analyse faciale.Dans la première partie de cette thèse, nous avons proposé le Modèle Actif d’Apparence Multi-Objet. La spécificité du modèle proposé est que les différentes parties du visage sont traités comme des objets distincts et les mouvements oculaires (du regard et clignotement) sont extrinsèquement paramétrées.La deuxième partie de la thèse porte sur l'utilisation de la modélisation de visage dans le contexte de la reconnaissance des émotions.Premièrement, nous avons proposé un système de reconnaissance des expressions faciales sous la forme d’Action Units. Notre contribution porte principalement sur l'extraction des descripteurs de visage. Pour cela nous avons utilisé les modèles AAM locaux.Le second système concerne la reconnaissance multimodale des quatre dimensions affectives :. Nous avons proposé un système qui fusionne des caractéristiques audio, contextuelles et visuelles pour donner en sortie les quatre dimensions émotionnelles. Nous contribuons à ce système en trouvant une localisation précise des traits du visage. En conséquence, nous proposons l’AAM Multi-Modèle. Ce modèle combine un modèle global extrinsèque du visage et un modèle local de la bouche. / The work in this thesis deals with the problematic of face modeling for the purpose of facial analysis.In the first part of this thesis, we proposed the Multi-Object Facial Actions Active Appearance Model (AAM). The specificity of the proposed model is that different parts of the face are treated as separate objects and eye movements (gaze and blink) are extrinsically parameterized. This increases the generalization capabilities of classical AAM.The second part of the thesis concerns the use of face modeling in the context of expression and emotion recognition. First we have proposed a system for the recognition of facial expressions in the form of Action Units (AU). Our contribution concerned mainly the extraction of AAM features of which we have opted for the use of local models.The second system concerns multi-modal recognition of four continuously valued affective dimensions. We have proposed a system that fuses audio, context and visual features and gives as output the four emotional dimensions. We contribute to the system by finding the precise localization of the facial features. Accordingly, we propose the Multi-Local AAM. This model combines extrinsically a global model of the face and a local one of the mouth through the computation of projection errors on the same global AAM.
|
12 |
Detection and integration of affective feedback into distributed interactive systemsŞerban, Ovidiu Mircea 13 September 2013 (has links) (PDF)
Human-Computer Interaction migrates from the classic perspective to a more natural environment, where humans are able to use natural language to exchange knowledge with a computer. In order to fully "understand" the human's intentions, the computer should be able to detect emotions and reply accordingly. This thesis focuses on several issues regarding the human affects, from various detection techniques to their integration into a Distributed Interactive System. Emotions are a fuzzy concept and their perception across human individuals may vary as well. Therefore, this makes the detection problem very difficult for a computer. From the affect detection perspective, we proposed three different approaches: an emotion detection method based on Self Organizing Maps, a valence classifier based on multi-modal features and Support Vector Machines, and a technique to resolve conflicts into a well known affective dictionary (SentiWordNet). Moreover, from the system integration perspective, two issues are approached: a Wizard of Oz experiment in a children storytelling environment and an architecture for a Distributed Interactive System.
|
13 |
Vision based facial emotion detection using deep convolutional neural networksJulin, Fredrik January 2019 (has links)
Emotion detection, also known as Facial expression recognition, is the art of mapping an emotion to some sort of input data taken from a human. This is a powerful tool to extract valuable information from individuals which can be used as data for many different purposes, ranging from medical conditions such as depression to customer feedback. To be able to solve the problem of facial expression recognition, smaller subtasks are required and all of them together form the complete system to the problem. Breaking down the bigger task at hand, one can think of these smaller subtasks in the form of a pipeline that implements the necessary steps for classification of some input to then give an output in the form of emotion. In recent time with the rise of the art of computer vision, images are often used as input for these systems and have shown great promise to assist in the task of facial expression recognition as the human face conveys the subjects emotional state and contain more information than other inputs, such as text or audio. Many of the current state-of-the-art systems utilize computer vision in combination with another rising field, namely AI, or more specifically deep learning. These proposed methods for deep learning are in many cases using a special form of neural network called convolutional neural network that specializes in extracting information from images. Then performing classification using the SoftMax function, acting as the last part before the output in the facial expression pipeline. This thesis work has explored these methods of utilizing convolutional neural networks to extract information from images and builds upon it by exploring a set of machine learning algorithms that replace the more commonly used SoftMax function as a classifier, in attempts to further increase not only the accuracy but also optimize the use of computational resources. The work also explores different techniques for the face detection subtask in the pipeline by comparing two approaches. One of these approaches is more frequently used in the state-of-the-art and is said to be more viable for possible real-time applications, namely the Viola-Jones algorithm. The other is a deep learning approach using a state-of-the-art convolutional neural network to perform the detection, in many cases speculated to be too computationally intense to run in real-time. By applying a state-of-the-art inspired new developed convolutional neural network together with the SoftMax classifier, the final performance did not reach state-of-the-art accuracy. However, the machine-learning classifiers used shows promise and bypass the SoftMax function in performance in several cases when given a massively smaller number of samples as training. Furthermore, the results given from implementing and testing a pure deep learning approach, using deep learning algorithms for both the detection and classification stages of the pipeline, shows that deep learning might outperform the classic Viola-Jones algorithm in terms of both detection rate and frames per second.
|
14 |
基於語意框架之讀者情緒偵測研究 / Semantic Frame-based Approach for Reader-Emotion Detection陳聖傑, Chen, Cen Chieh Unknown Date (has links)
過往對於情緒分析的研究顯少聚焦在讀者情緒,往往著眼於筆者情緒之研究。讀者情緒是指讀者閱讀文章後產生之情緒感受。然而相同一篇文章可能會引起讀者多種情緒反應,甚至產生與筆者迥異之情緒感受,也突顯其讀者情緒分析存在更複雜的問題。本研究之目的在於辨識讀者閱讀文章後之切確情緒,而文件分類的方法能有效地應用於讀者情緒偵測的研究,除了能辨識出正確的讀者情緒之外,並且能保留讀者情緒文件之相關內容。然而,目前的資訊檢索系統仍缺乏對隱含情緒之文件有效的辨識能力,特別是對於讀者情緒的辨識。除此之外,基於機器學習的方法難以讓人類理解,也很難查明辨識失敗的原因,進而無法了解何種文章引發讀者切確的情緒感受。有鑑於此,本研究提出一套基於語意框架(frame-based approach, FBA)之讀者情緒偵測研究的方法,FBA能模擬人類閱讀文章的方式外,並且可以有效地建構讀者情緒之基礎知識,以形成讀者情緒的知識庫。FBA具備高自動化抽取語意概念的基礎知識,除了利用語法結構的特徵,我們進一步考量周邊語境和語義關聯,將相似的知識整合成具有鑑別力之語意框架,並且透過序列比對(sequence alignment)的方式進行讀者情緒文件之匹配。經實驗結果顯示證明,本研究方法能有效地運用於讀者情緒偵測之相關研究。 / Previous studies on emotion classification mainly focus on the writer's emotional state. By contrast, this research emphasizes emotion detection from the readers' perspective. The classification of documents into reader-emotion categories can be applied in several ways, and one of the applications is to retain only the documents that cause desired emotions for enabling users to retrieve documents that contain relevant contents and at the same time instill proper emotions. However, current IR systems lack of ability to discern emotion within texts, reader-emotion has yet to achieve comparable performance. Moreover, the pervious machine learning-based approaches are generally not human understandable, thereby, it is difficult to pinpoint the reason for recognition failures and understand what emotions do articles trigger in their readers.
We propose a flexible semantic frame-based approach (FBA) for reader's emotion detection that simulates such process in human perception. FBA is a highly automated process that incorporates various knowledge sources to learn semantic frames that characterize an emotion and is comprehensible for humans from raw text. Generated frames are adopted to predict readers' emotion through an alignment-based matching algorithm that allows a semantic frame to be partially matched through a statistical scoring scheme. Experiment results demonstrate that our approach can effectively detect readers' emotion by exploiting the syntactic structures and semantic associations in the context as well as outperforms currently well-known statistical text classification methods and the stat-of-the-art reader-emotion detection method.
|
15 |
Rozpoznávání emocí v česky psaných textech / Recognition of emotions in Czech textsČervenec, Radek January 2011 (has links)
With advances in information and communication technologies over the past few years, the amount of information stored in the form of electronic text documents has been rapidly growing. Since the human abilities to effectively process and analyze large amounts of information are limited, there is an increasing demand for tools enabling to automatically analyze these documents and benefit from their emotional content. These kinds of systems have extensive applications. The purpose of this work is to design and implement a system for identifying expression of emotions in Czech texts. The proposed system is based mainly on machine learning methods and therefore design and creation of a training set is described as well. The training set is eventually utilized to create a model of classifier using the SVM. For the purpose of improving classification results, additional components were integrated into the system, such as lexical database, lemmatizer or derived keyword dictionary. The thesis also presents results of text documents classification into defined emotion classes and evaluates various approaches to categorization.
|
16 |
Detection and integration of affective feedback into distributed interactive systems / Détection et intégration des réactions affectives dans les systèmes interactifs distribuésŞerban, Ovidiu Mircea 13 September 2013 (has links)
L’Interaction Humain-Machine a évolué d’une perspective classique vers un environnement plus naturel, dans lequel les humains peuvent utiliser la langue naturelle pour échanger des connaissances avec un ordinateur. Pour bien “comprendre” les intentions de l’humain, l’ordinateur doit être capable de détecter les émotions et de répondre en conséquence. Cette thèse porte sur plusieurs aspects de la détection des émotion humaines, en partant de différentes techniques de détection jusqu’à leur intégration dans un Système Interactif Distribué. Les émotions sont un concept flou et leur perception par des individus humains peut aussi varier. Par conséquent, cela rend le problème de détection très difficile en informatique. Du point vue de la détection de l’affect, nous avons proposé trois approches différentes : une méthode à base de Cartes Auto-Organisatrices (Self Organizing Maps- SOM), un classifieur de la valence basé sur des caractéristiques multi-modales et un Séparateur à Vaste Marge (Support Vector Machines - SVM) et une technique pour résoudre les conflits dans un dictionnaire affectif (SentiWordNet). En outre, du point de vue de l’intégration aux systèmes, deux questions sont abordées : une expérience de type Magicien d’Oz dans un environnement de narration d’histoires pour enfants et une architecture de Système Interactif Distribué. / Human-Computer Interaction migrates from the classic perspective to a more natural environment, where humans are able to use natural language to exchange knowledge with a computer. In order to fully “understand” the human’s intentions, the computer should be able to detect emotions and reply accordingly. This thesis focuses on several issues regarding the human affects, from various detection techniques to their integration into a Distributed Interactive System. Emotions are a fuzzy concept and their perception across human individuals may vary as well. Therefore, this makes the detection problem very difficult for a computer. From the affect detection perspective, we proposed three different approaches: an emotion detection method based on Self Organizing Maps, a valence classifier based on multi-modal features and Support Vector Machines, and a technique to resolve conflicts into a well known affective dictionary (SentiWordNet). Moreover, from the system integration perspective, two issues are approached: a Wizard of Oz experiment in a children storytelling environment and an architecture for a Distributed Interactive System.
|
17 |
Modélisation des émotions de l’apprenant et interventions implicites pour les systèmes tutoriels intelligentsJraidi, Imène 08 1900 (has links)
La modélisation de l’expérience de l’utilisateur dans les Interactions Homme-Machine est un enjeu important pour la conception et le développement des systèmes adaptatifs intelligents. Dans ce contexte, une attention particulière est portée sur les réactions émotionnelles de l’utilisateur, car elles ont une influence capitale sur ses aptitudes cognitives, comme la perception et la prise de décision. La modélisation des émotions est particulièrement pertinente pour les Systèmes Tutoriels Émotionnellement Intelligents (STEI). Ces systèmes cherchent à identifier les émotions de l’apprenant lors des sessions d’apprentissage, et à optimiser son expérience d’interaction en recourant à diverses stratégies d’interventions.
Cette thèse vise à améliorer les méthodes de modélisation des émotions et les stratégies émotionnelles utilisées actuellement par les STEI pour agir sur les émotions de l’apprenant. Plus précisément, notre premier objectif a été de proposer une nouvelle méthode pour détecter l’état émotionnel de l’apprenant, en utilisant différentes sources d’informations qui permettent de mesurer les émotions de façon précise, tout en tenant compte des variables individuelles qui peuvent avoir un impact sur la manifestation des émotions. Pour ce faire, nous avons développé une approche multimodale combinant plusieurs mesures physiologiques (activité cérébrale, réactions galvaniques et rythme cardiaque) avec des variables individuelles, pour détecter une émotion très fréquemment observée lors des sessions d’apprentissage, à savoir l’incertitude. Dans un premier lieu, nous avons identifié les indicateurs physiologiques clés qui sont associés à cet état, ainsi que les caractéristiques individuelles qui contribuent à sa manifestation. Puis, nous avons développé des modèles prédictifs permettant de détecter automatiquement cet état à partir des différentes variables analysées, à travers l’entrainement d’algorithmes d’apprentissage machine.
Notre deuxième objectif a été de proposer une approche unifiée pour reconnaître simultanément une combinaison de plusieurs émotions, et évaluer explicitement l’impact de ces émotions sur l’expérience d’interaction de l’apprenant. Pour cela, nous avons développé une plateforme hiérarchique, probabiliste et dynamique permettant de suivre les changements émotionnels de l'apprenant au fil du temps, et d’inférer automatiquement la tendance générale qui caractérise son expérience d’interaction à savoir : l’immersion, le blocage ou le décrochage. L’immersion correspond à une expérience optimale : un état dans lequel l'apprenant est complètement concentré et impliqué dans l’activité d’apprentissage. L’état de blocage correspond à une tendance d’interaction non optimale où l'apprenant a de la difficulté à se concentrer. Finalement, le décrochage correspond à un état extrêmement défavorable où l’apprenant n’est plus du tout impliqué dans l’activité d’apprentissage. La plateforme proposée intègre trois modalités de variables diagnostiques permettant d’évaluer l’expérience de l’apprenant à savoir : des variables physiologiques, des variables comportementales, et des mesures de performance, en combinaison avec des variables prédictives qui représentent le contexte courant de l’interaction et les caractéristiques personnelles de l'apprenant. Une étude a été réalisée pour valider notre approche à travers un protocole expérimental permettant de provoquer délibérément les trois tendances ciblées durant l’interaction des apprenants avec différents environnements d’apprentissage.
Enfin, notre troisième objectif a été de proposer de nouvelles stratégies pour influencer positivement l’état émotionnel de l’apprenant, sans interrompre la dynamique de la session d’apprentissage. Nous avons à cette fin introduit le concept de stratégies émotionnelles implicites : une nouvelle approche pour agir subtilement sur les émotions de l’apprenant, dans le but d’améliorer son expérience d’apprentissage. Ces stratégies utilisent la perception subliminale, et plus précisément une technique connue sous le nom d’amorçage affectif. Cette technique permet de solliciter inconsciemment les émotions de l’apprenant, à travers la projection d’amorces comportant certaines connotations affectives. Nous avons mis en œuvre une stratégie émotionnelle implicite utilisant une forme particulière d’amorçage affectif à savoir : le conditionnement évaluatif, qui est destiné à améliorer de façon inconsciente l’estime de soi. Une étude expérimentale a été réalisée afin d’évaluer l’impact de cette stratégie sur les réactions émotionnelles et les performances des apprenants. / Modeling the user’s experience within Human-Computer Interaction is an important challenge for the design and development of intelligent adaptive systems. In this context, a particular attention is given to the user’s emotional reactions, as they decisively influence his cognitive abilities, such as perception and decision-making. Emotion modeling is particularly relevant for Emotionally Intelligent Tutoring Systems (EITS). These systems seek to identify the learner’s emotions during tutoring sessions, and to optimize his interaction experience using a variety of intervention strategies.
This thesis aims to improve current methods on emotion modeling, as well as the emotional strategies that are presently used within EITS to influence the learner’s emotions. More precisely, our first objective was to propose a new method to recognize the learner’s emotional state, using different sources of information that allow to measure emotions accurately, whilst taking account of individual characteristics that can have an impact on the manifestation of emotions. To that end, we have developed a multimodal approach combining several physiological measures (brain activity, galvanic responses and heart rate) with individual variables, to detect a specific emotion, which is frequently observed within computer tutoring, namely : uncertainty. First, we have identified the key physiological indicators that are associated to this state, and the individual characteristics that contribute to its manifestation. Then, we have developed predictive models to automatically detect this state from the analyzed variables, trough machine learning algorithm training.
Our second objective was to propose a unified approach to simultaneously recognize a combination of several emotions, and to explicitly evaluate the impact of these emotions on the learner’s interaction experience. For this purpose, we have developed a hierarchical, probabilistic and dynamic framework, which allows one to track the learner’s emotional changes over time, and to automatically infer the trend that characterizes his interaction experience namely : flow, stuck or off-task. Flow is an optimal experience : a state in which the learner is completely focused and involved within the learning activity. The state of stuck is a non-optimal trend of the interaction where the learner has difficulty to maintain focused attention. Finally, the off-task behavior is an extremely unfavorable state where the learner is not involved anymore within the learning session. The proposed framework integrates three-modality diagnostic variables that sense the learner’s experience including : physiology, behavior and performance, in conjunction with predictive variables that represent the current context of the interaction and the learner’s personal characteristics. A human-subject study was conducted to validate our approach through an experimental protocol designed to deliberately elicit the three targeted trends during the learners’ interaction with different learning environments.
Finally, our third objective was to propose new strategies to positively influence the learner’s emotional state, without interrupting the dynamics of the learning session. To this end, we have introduced the concept of implicit emotional strategies : a novel approach to subtly impact the learner’s emotions, in order to improve his learning experience. These strategies use the subliminal perception, and more precisely a technique known as affective priming. This technique aims to unconsciously solicit the learner’s emotions, through the projection of primes charged with specific affective connotations. We have implemented an implicit emotional strategy using a particular form of affective priming namely : the evaluative conditioning, which is designed to unconsciously enhance self-esteem. An experimental study was conducted in order to evaluate the impact of this strategy on the learners’ emotional reactions and performance.
|
18 |
Modélisation des émotions de l’apprenant et interventions implicites pour les systèmes tutoriels intelligentsJraidi, Imène 08 1900 (has links)
La modélisation de l’expérience de l’utilisateur dans les Interactions Homme-Machine est un enjeu important pour la conception et le développement des systèmes adaptatifs intelligents. Dans ce contexte, une attention particulière est portée sur les réactions émotionnelles de l’utilisateur, car elles ont une influence capitale sur ses aptitudes cognitives, comme la perception et la prise de décision. La modélisation des émotions est particulièrement pertinente pour les Systèmes Tutoriels Émotionnellement Intelligents (STEI). Ces systèmes cherchent à identifier les émotions de l’apprenant lors des sessions d’apprentissage, et à optimiser son expérience d’interaction en recourant à diverses stratégies d’interventions.
Cette thèse vise à améliorer les méthodes de modélisation des émotions et les stratégies émotionnelles utilisées actuellement par les STEI pour agir sur les émotions de l’apprenant. Plus précisément, notre premier objectif a été de proposer une nouvelle méthode pour détecter l’état émotionnel de l’apprenant, en utilisant différentes sources d’informations qui permettent de mesurer les émotions de façon précise, tout en tenant compte des variables individuelles qui peuvent avoir un impact sur la manifestation des émotions. Pour ce faire, nous avons développé une approche multimodale combinant plusieurs mesures physiologiques (activité cérébrale, réactions galvaniques et rythme cardiaque) avec des variables individuelles, pour détecter une émotion très fréquemment observée lors des sessions d’apprentissage, à savoir l’incertitude. Dans un premier lieu, nous avons identifié les indicateurs physiologiques clés qui sont associés à cet état, ainsi que les caractéristiques individuelles qui contribuent à sa manifestation. Puis, nous avons développé des modèles prédictifs permettant de détecter automatiquement cet état à partir des différentes variables analysées, à travers l’entrainement d’algorithmes d’apprentissage machine.
Notre deuxième objectif a été de proposer une approche unifiée pour reconnaître simultanément une combinaison de plusieurs émotions, et évaluer explicitement l’impact de ces émotions sur l’expérience d’interaction de l’apprenant. Pour cela, nous avons développé une plateforme hiérarchique, probabiliste et dynamique permettant de suivre les changements émotionnels de l'apprenant au fil du temps, et d’inférer automatiquement la tendance générale qui caractérise son expérience d’interaction à savoir : l’immersion, le blocage ou le décrochage. L’immersion correspond à une expérience optimale : un état dans lequel l'apprenant est complètement concentré et impliqué dans l’activité d’apprentissage. L’état de blocage correspond à une tendance d’interaction non optimale où l'apprenant a de la difficulté à se concentrer. Finalement, le décrochage correspond à un état extrêmement défavorable où l’apprenant n’est plus du tout impliqué dans l’activité d’apprentissage. La plateforme proposée intègre trois modalités de variables diagnostiques permettant d’évaluer l’expérience de l’apprenant à savoir : des variables physiologiques, des variables comportementales, et des mesures de performance, en combinaison avec des variables prédictives qui représentent le contexte courant de l’interaction et les caractéristiques personnelles de l'apprenant. Une étude a été réalisée pour valider notre approche à travers un protocole expérimental permettant de provoquer délibérément les trois tendances ciblées durant l’interaction des apprenants avec différents environnements d’apprentissage.
Enfin, notre troisième objectif a été de proposer de nouvelles stratégies pour influencer positivement l’état émotionnel de l’apprenant, sans interrompre la dynamique de la session d’apprentissage. Nous avons à cette fin introduit le concept de stratégies émotionnelles implicites : une nouvelle approche pour agir subtilement sur les émotions de l’apprenant, dans le but d’améliorer son expérience d’apprentissage. Ces stratégies utilisent la perception subliminale, et plus précisément une technique connue sous le nom d’amorçage affectif. Cette technique permet de solliciter inconsciemment les émotions de l’apprenant, à travers la projection d’amorces comportant certaines connotations affectives. Nous avons mis en œuvre une stratégie émotionnelle implicite utilisant une forme particulière d’amorçage affectif à savoir : le conditionnement évaluatif, qui est destiné à améliorer de façon inconsciente l’estime de soi. Une étude expérimentale a été réalisée afin d’évaluer l’impact de cette stratégie sur les réactions émotionnelles et les performances des apprenants. / Modeling the user’s experience within Human-Computer Interaction is an important challenge for the design and development of intelligent adaptive systems. In this context, a particular attention is given to the user’s emotional reactions, as they decisively influence his cognitive abilities, such as perception and decision-making. Emotion modeling is particularly relevant for Emotionally Intelligent Tutoring Systems (EITS). These systems seek to identify the learner’s emotions during tutoring sessions, and to optimize his interaction experience using a variety of intervention strategies.
This thesis aims to improve current methods on emotion modeling, as well as the emotional strategies that are presently used within EITS to influence the learner’s emotions. More precisely, our first objective was to propose a new method to recognize the learner’s emotional state, using different sources of information that allow to measure emotions accurately, whilst taking account of individual characteristics that can have an impact on the manifestation of emotions. To that end, we have developed a multimodal approach combining several physiological measures (brain activity, galvanic responses and heart rate) with individual variables, to detect a specific emotion, which is frequently observed within computer tutoring, namely : uncertainty. First, we have identified the key physiological indicators that are associated to this state, and the individual characteristics that contribute to its manifestation. Then, we have developed predictive models to automatically detect this state from the analyzed variables, trough machine learning algorithm training.
Our second objective was to propose a unified approach to simultaneously recognize a combination of several emotions, and to explicitly evaluate the impact of these emotions on the learner’s interaction experience. For this purpose, we have developed a hierarchical, probabilistic and dynamic framework, which allows one to track the learner’s emotional changes over time, and to automatically infer the trend that characterizes his interaction experience namely : flow, stuck or off-task. Flow is an optimal experience : a state in which the learner is completely focused and involved within the learning activity. The state of stuck is a non-optimal trend of the interaction where the learner has difficulty to maintain focused attention. Finally, the off-task behavior is an extremely unfavorable state where the learner is not involved anymore within the learning session. The proposed framework integrates three-modality diagnostic variables that sense the learner’s experience including : physiology, behavior and performance, in conjunction with predictive variables that represent the current context of the interaction and the learner’s personal characteristics. A human-subject study was conducted to validate our approach through an experimental protocol designed to deliberately elicit the three targeted trends during the learners’ interaction with different learning environments.
Finally, our third objective was to propose new strategies to positively influence the learner’s emotional state, without interrupting the dynamics of the learning session. To this end, we have introduced the concept of implicit emotional strategies : a novel approach to subtly impact the learner’s emotions, in order to improve his learning experience. These strategies use the subliminal perception, and more precisely a technique known as affective priming. This technique aims to unconsciously solicit the learner’s emotions, through the projection of primes charged with specific affective connotations. We have implemented an implicit emotional strategy using a particular form of affective priming namely : the evaluative conditioning, which is designed to unconsciously enhance self-esteem. An experimental study was conducted in order to evaluate the impact of this strategy on the learners’ emotional reactions and performance.
|
Page generated in 0.1181 seconds