Spelling suggestions: "subject:"cmpirical mode decomposition"" "subject:"cmpirical mode ecomposition""
21 |
Remainig useful life prediction via empirical mode decomposition, wavelets and support vector machineSOUTO MAIOR, Caio Bezerra 21 February 2017 (has links)
Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-06-26T22:26:10Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
DISSERTAÇÃO Caio Bezerra Souto Maior.pdf: 3924685 bytes, checksum: 6968386bf75059f45ee80306322d2a56 (MD5) / Made available in DSpace on 2018-06-26T22:26:10Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
DISSERTAÇÃO Caio Bezerra Souto Maior.pdf: 3924685 bytes, checksum: 6968386bf75059f45ee80306322d2a56 (MD5)
Previous issue date: 2017-02-21 / CAPES / The useful life time of equipment is an important variable related to reliability and maintenance. The knowledge about the useful remaining life of operation system by means of a prognostic and health monitoring could lead to competitive advantage to the corporations. There are numbers of models trying to predict the reliability’s variable behavior, such as the remaining useful life, from different types of signal (e.g. vibration signal), however several could not be realistic due to the imposed simplifications. An alternative to those models are the learning methods, used when exist many observations about the variable. A well-known method is Support Vector Machine (SVM), with the advantage that is not necessary previous knowledge about neither the function’s behavior nor the relation between input and output. In order to achieve the best SVM’s parameters, a Particle Swarm Optimization (PSO) algorithm is coupled to enhance the solution. Empirical Mode Decomposition (EMD) and Wavelets rise as two preprocessing methods seeking to improve the input data analysis. In this paper, EMD and wavelets are used coupled with PSO+SVM to predict the rolling bearing Remaining Useful Life (RUL) from a vibration signal and compare with the prediction without any preprocessing technique. As conclusion, EMD models presented accurate predictions and outperformed the other models tested. / O tempo de vida útil de um equipamento é uma importante variável relacionada à confiabilidade e à manutenção, e o conhecimento sobre o tempo útil remanescente de um sistema em operação, por meio de um monitoramento do prognóstico de saúde, pode gerar vantagens competitivas para as corporações. Existem diversos modelos utilizados na tentativa de prever o comportamento de variáveis de confiabilidade, tal como a vida útil remanescente, a partir de diferentes tipos de sinais (e.g. sinal de vibração), porém alguns podem não ser realistas, devido às simplificações impostas. Uma alternativa a esses modelos são os métodos de aprendizado, utilizados quando se dispõe de diversas observações da variável. Um conhecido método de aprendizado supervisionado é o Support Vector Machine (SVM), que gera um mapeamento de funções de entrada-saída a partir de um conjunto de treinamento. Para encontrar os melhores parâmetros do SVM, o algoritmo de Particle Swarm Optimization (PSO) é acoplado para melhorar a solução. Empirical Mode Decomposition (EMD) e Wavelets são usados como métodos pré-processamento que buscam melhorar a qualidade dos dados de entrada para PSO+SVM. Neste trabalho, EMD e Wavelets foram usadas juntamente com PSO+SVM para estimar o tempo de vida útil remanescente de rolamentos a partir de sinais de vibração. Os resultados obtidos com e sem as técnicas de pré-processamento foram comparados. Ao final, é mostrado que modelos baseados em EMD apresentaram boa acurácia e superaram o desempenho dos outros modelos testados.
|
22 |
Toward Using Empirical Mode Decomposition to Identify Anomalies in Stream FlowData and Correlations with other Environmental DataRamirez, Saul Gallegos 01 June 2019 (has links)
I applied empirical mode decomposition (EMD) and the Hilbert-Herbert transforms, as tools to analyze streamflow data. I used the EMD method to extract and analyze periodic processes and trends in several environmental datasets including daily stream flow, daily precipitation, and daily temperature on data from the watersheds of two rivers in the Upper Colorado River Basin, the Yampa and the Upper-Green rivers. I used these data to identify forcing functions governing streamflow. Forcing functions include environmental factors such as temperature and precipitation and anthropogenic factors such as dams or diversions. The Green and Yampa Rivers have similar headwaters, but the Yampa has minimal diversions or controls while Flaming George Dam on the Green river significantly affects flow. This provides two different flow regimes with similar large watersheds. In addition to flow data, I analyzed several time series data sets, including temperature and precipitation from Northeast Utah, North Western Colorado, and Southern Wyoming. These data are from the area that defines the Yampa River and Green River watersheds, which stretch from Flaming Gorge Dam to Ouray Colorado. The EMD method is a relatively new technique that allows any time series data set, including non-linear and non-stationary datasets that are common in earth observation data, to be decomposed into a small quantity of composite finite data series, called intrinsic mode functions (IMFs). The EMD method can decompose any complicated data into several IMFs that represent independent signals in the original data. These IMFs may represent periodic forcing functions, such as environmental conditions or dam operations, or they may be artifacts of the decomposition method and not have an associated physical meaning. This study attempts to assign physical meaning to some IMFs resulting from the decomposition of the Green and Yampa flows where possible. To assign physical meaning to the IMFs, I analyzed frequencies of each IMF using the Hilbert-Hung transform, part of the Empirical Mode Decomposition method, and then compared frequencies of the IMFs with the known frequencies of physical processes. I performed these calculations on both flow, temperature, and precipitation. I found significant correlation between IMF components of flow, precipitation, and temperature data with El Niño Southern Oscillation (ENSO) events. The EMD process also extracts the long-term trend in non-linear data sets that can provide insights into the effects of climate change on the flow system. Though in preliminary stages of research, these analysis methods may lead to further understanding the availability of water within the upper Yampa and Green River Watersheds.
|
23 |
Potlačení driftu signálu EKG s využitím empirického rozkladu / ECG baseline wander correction based on the empirical mode decompositionŠlancar, Matěj January 2017 (has links)
The aim of this thesis is to introduce with principle of Empirical Mode Decomposition method and possibility use for correction of baseline wander in ECG signals. The thesis describes the main components of the ECG signal, a selection of possible types of signal noise, its property and principles of chosen methods for filtration of ECG signals. In conclusion the evaluation of the effectiveness of the EMD method for filtering a baseline wander and it comparing with effectiveness of the linear filtration. Functionality of used algorithms has been tested on signals of CSE standard library.
|
24 |
Autonomous auscultation of the human heartBotha, J. S. F. 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The research presented in this thesis serves to provide a tool to autonomously
screen for cardiovascular disease in the rural areas of Africa. Vital information
thus obtained from patients can be communicated to advanced medical centres by
Telemedicine. Cardiovascular disease is then detected in its initial stages, which is
essential to its effective treatment. The system developed in this study uses recorded
heart sounds and electrocardiogram signals to distinguish between normal
and abnormal heart conditions. This system improves on standard diagnostic tools
in that it does not require cumbersome and expensive imaging equipment or a
highly trained operator.
Heart sound- and electrocardiogram signals from 62 volunteers were recorded
with the prototype Precordialcardiogram device as part of a clinical study to aid in
the development of the autonomous auscultation software and to screen patients
for cardiovascular disease. These volunteers consisted of 28 patients of Tygerberg
Hospital with cardiovascular disease and, for control purposes, 34 persons with
normal heart conditions.
The autonomous auscultation system developed during this study, interprets
data obtained with the Precordialcardiogram device to autonomously acquire a
normal or abnormal diagnosis. The system employs wavelet soft thresholding to
denoise the recorded signals, followed by the segmentation of heart sound by
identifying peaks in the electrocardiogram. Novel frequency spectral information
was extracted as features from the heart sounds, by means of ensemble empirical
mode decomposition and auto regressive modelling. These features proved to be
particularly significant and played a major role in the screening capability of the
system. New time domain based features were identified, established on the specific
characteristics of the various cardiovascular diseases encountered during the
study. These features were extracted via the energy ratios between different parts
of ventricular systole and diastole of each recorded cardiac cycle.
The respective features were classified to characterise typical heart diseases as
well as healthy hearts with an ensemble artificial neural network. Herein the decisions
of all the members were combined to obtain a final diagnosis. The performance
of the autonomous auscultation system used in concert with the Precordialcardiogram
device prototype, as determined through the leave-one-out crossvalidation
method, had a sensitivity rating of 82% and a specificity rating of 88%.
These results demonstrate the potential benefit of the Precordialcardiogram device
and the developed autonomous auscultation software in a Telemedicine environment. / AFRIKAANSE OPSOMMING: Hierdie tesis beskryf die navorsing van 'n outonome toetsing en sifting stelsel
vir kardiovaskulêre siektes in landelike dele van Afrika, vanwaar mediese inligting
per telefoon versend kan word. Die apparaat maak vroeë opsporing van kardiovaskulêre
siektes moontlik, wat essensieel is vir effektiewe behandeling daarvan
en ook die koste-effek van hierdie siektes verminder. In die huidige ontwikkelde
stelsel word normale sowel as abnormale hart-toestande getipeer met opnames
van hartklanke sowel as elektrokardiogram-seine. Voordele wat hierdie
stelsel bo standaard diagnostiese metodes het, sluit die hanteerbare formaat van
die hele apparaat sowel as die nie-noodsaaklikheid van duur beeldskeppende apparaat,
of hoogs opgeleide personeel.
Hartklank- en elektrokardiogramseine van 62 vrywilligers is met die prototipe
"Precordialcardiogram" apparaat opgeneem om by te dra tot die ontwikkeling van
die rekenaar sagteware vir die outonome auscultatsie stelsel en om die pasiëntsiftingsvermoë
daarvan te toets. Die vrywilligers het 28 pasiënte van Tygerberg
hospitaal met abnormale harttoestande ingesluit, sowel as ‘n kontrolegroep van 34
persone met normale harttoestande. Die outonome auskultasie-stelsel wat tot stand
gekom het deur hierdie ondersoek maak gebruik van “wavelet” sagte drempeling
om geraas uit die opgeneemde seine te verwyder. Daarna word die hartklanke gesegmenteer
deur die pieke van die elektrokardiogram te identifiseer.
Deur middel van "ensemble empirical mode decomposition" en outoregressiewe
modellering, is nuwe inligting aangaande die frekwensie spektra van
hartklanke, aanwysend van spesifieke harttoestande, verkry. Die beduidendheid
van hierdie eienskappe is bewys en het 'n belangrike rol in die siftingsvermoë van
die stelsel gespeel. Hierbenewens is nuwe tyd-gebaseerde eienskappe van die
onderskeie kardiovaskulêre siektes wat tydens die ondersoek bestudeer is, geïdentifiseer.
Hierdie eienskappe is geëien deur die energie-verhoudings tussen verskillende
dele van die ventrikulêre sistolie en diastolie van elke opgeneemde hartsiklus
te ontleed.
'n "Ensemble artificial neural network" is gebruik om die geïdentifiseerde eienskappe
van hartsiektes sowel as normale harttoestande, te klassifiseer. Hierin is
besluite van al die lede van die netwerk gekombineer, ten einde ‘n finale diagnose
te maak. Die klassifiseerder se geldigheid is kruis-bevestig deur middel van
die laat-een-uit kruisbevestigings-metode.
Deur middel van die kruis-bevestigingsmetode is die bedryfsvermoëns van die
outonome auskultasie-stelsel, toegerus met die "Precordialcardiogram" apparaat,
repektiewelik op 82% vir sensitiwiteit en 88% vir spesifisiteit vasgestel. Hierdie resultate demonstreer die benuttingspotensiaal van die apparaat in 'n Telemedisyne
omgewing.
|
25 |
Improving time series modeling by decomposing and analysing stochastic and deterministic influences / Modelagem de séries temporais por meio da decomposição e análise de influências estocásticas e determinísticasRios, Ricardo Araújo 22 October 2013 (has links)
This thesis presents a study on time series analysis, which was conducted based on the following hypothesis: time series influenced by additive noise can be decomposed into stochastic and deterministic components in which individual models permit obtaining a hybrid one that improves accuracy. This hypothesis was confirmed in two steps. In the first one, we developed a formal analysis using the Nyquist-Shannon sampling theorem, proving Intrinsic Mode Functions (IMFs) extracted from the Empirical Mode Decomposition (EMD) method can be combined, according to their frequency intensities, to form stochastic and deterministic components. Considering this proof, we designed two approaches to decompose time series, which were evaluated in synthetic and real-world scenarios. Experimental results confirmed the importance of decomposing time series and individually modeling the deterministic and stochastic components, proving the second part of our hypothesis. Furthermore, we noticed the individual analysis of both components plays an important role in detecting patterns and extracting implicit information from time series. In addition to these approaches, this thesis also presents two new measurements. The first one is used to evaluate the accuracy of time series modeling in forecasting observations. This measurement was motivated by the fact that existing measurements only consider the perfect match between expected and predicted values. This new measurement overcomes this issue by also analyzing the global time series behavior. The second measurement presented important results to assess the influence of the deterministic and stochastic components on time series observations, supporting the decomposition process. Finally, this thesis also presents a Systematic Literature Review, which collected important information on related work, and two new methods to produce surrogate data, which permit investigating the presence of linear and nonlinear Gaussian processes in time series, irrespective of the influence of nonstationary behavior / Esta tese apresenta um estudo sobre análise de séries temporais, a qual foi conduzida baseada na seguinte hipótese: séries temporais influenciadas por ruído aditivo podem ser decompostas em componentes estocásticos e determinísticos que ao serem modelados individualmente permitem obter um modelo híbrido de maior acurácia. Essa hipótese foi confirmada em duas etapas. Na primeira, desenvolveu-se uma análise formal usando o teorema de amostragem proposto por Nyquist-Shannon, provando que IMFs (Intrinsic Mode Functions) extraídas pelo método EMD (Empirical Mode Decomposition) podem ser combinadas de acordo com suas intensidades de frequência para formar os componentes estocásticos e determinísticos. Considerando essa prova, duas abordagens de decomposição de séries foram desenvolvidas e avaliadas em aplicações sintéticas e reais. Resultados experimentais confirmaram a importância de decompor séries temporais e modelar seus componentes estocásticos e determinísticos, provando a segunda parte da hipótese. Além disso, notou-se que a análise individual desses componentes possibilita detectar padrões e extrair importantes informações implícitas em séries temporais. Essa tese apresenta ainda duas novas medidas. A primeira é usada para avaliar a acurácia de modelos utilizados para predizer observações. A principal vantagem dessa medida em relação às existentes é a possibilidade de avaliar os valores individuais de predição e o comportamento global entre as observações preditas e experadas. A segunda medida permite avaliar a influência dos componentes estocásticos e determinísticos sobre as séries temporais. Finalmente, essa tese apresenta ainda resultados obtidos por meio de uma revisão sistemática da literatura, a qual coletou importantes trabalhos relacionados, e dois novos métodos para geração de dados substitutos, permitindo investigar a presença de processos Gaussianos lineares e não-lineares, independente da influência de comportamento não-estacionário
|
26 |
Segmentation et classification des signaux non-stationnaires : application au traitement des sons cardiaque et à l'aide au diagnostic / Segmentation and classification of non-stationary signals : Application on heart sounds analysis and auto-diagnosis domainMoukadem, Ali 16 December 2011 (has links)
Cette thèse dans le domaine du traitement des signaux non-stationnaires, appliqué aux bruits du cœur mesurés avec un stéthoscope numérique, vise à concevoir un outil automatisé et « intelligent », permettant aux médecins de disposer d’une source d’information supplémentaire à celle du stéthoscope traditionnel. Une première étape dans l’analyse des signaux du cœur, consiste à localiser le premier et le deuxième son cardiaque (S1 et S2) afin de le segmenter en quatre parties : S1, systole, S2 et diastole. Plusieurs méthodes de localisation des sons cardiaques existent déjà dans la littérature. Une étude comparative entre les méthodes les plus pertinentes est réalisée et deux nouvelles méthodes basées sur la transformation temps-fréquence de Stockwell sont proposées. La première méthode, nommée SRBF, utilise des descripteurs issus du domaine temps-fréquence comme vecteur d’entré au réseau de neurones RBF qui génère l’enveloppe d’amplitude du signal cardiaque, la deuxième méthode, nommée SSE, calcule l’énergie de Shannon du spectre local obtenu par la transformée en S. Ensuite, une phase de détection des extrémités (onset, ending) est nécessaire. Une méthode d’extraction des signaux S1 et S2, basée sur la transformée en S optimisée, est discutée et comparée avec les différentes approches qui existent dans la littérature. Concernant la classification des signaux cardiaques, les méthodes décrites dans la littérature pour classifier S1 et S2, se basent sur des critères temporels (durée de systole et diastole) qui ne seront plus valables dans plusieurs cas pathologiques comme par exemple la tachycardie sévère. Un nouveau descripteur issu du domaine temps-fréquence est évalué et validé pour discriminer S1 de S2. Ensuite, une nouvelle méthode de génération des attributs, basée sur la décomposition modale empirique (EMD) est proposée.Des descripteurs non-linéaires sont également testés, dans le but de classifier des sons cardiaques normaux et sons pathologiques en présence des souffles systoliques. Des outils de traitement et de reconnaissance des signaux non-stationnaires basés sur des caractéristiques morphologique, temps-fréquences et non linéaire du signal, ont été explorés au cours de ce projet de thèse afin de proposer un module d’aide au diagnostic, qui ne nécessite pas d’information à priori sur le sujet traité, robuste vis à vis du bruit et applicable dans des conditions cliniques. / This thesis in the field of biomedical signal processing, applied to the heart sounds, aims to develop an automated and intelligent module, allowing medical doctors to have an additional source of information than the traditional stethoscope. A first step in the analysis of heart sounds is the segmentation process. The heart sounds segmentation process segments the PCG (PhonoCardioGram) signal into four parts: S1 (first heart sound), systole, S2 (second heart sound) and diastole. It can be considered one of the most important phases in the auto-analysis of PCG signals. The proposed segmentation module in this thesis can be divided into three main blocks: localization of heart sounds, boundaries detection of the localized heart sounds and classification block to distinguish between S1and S2. Several methods of heart sound localization exist in the literature. A comparative study between the most relevant methods is performed and two new localization methods of heart sounds are proposed in this study. Both of them are based on the S-transform, the first method uses Radial Basis Functions (RBF) neural network to extract the envelope of the heart sound signal after a feature extraction process that operates on the S-matrix. The second method named SSE calculates the Shannon Energy of the local spectrum calculated by the S-transform for each sample of the heart sound signal. The second block contains a novel approach for the boundaries detection of S1 and S2 (onset & ending). The energy concentrations of the S-transform of localized sounds are optimized by using a window width optimization algorithm. Then the SSE envelope is recalculated and a local adaptive threshold is applied to refine the estimated boundaries. For the classification block, most of the existing methods in the literature use the systole and diastole duration (systole regularity) as a criterion to discriminate between S1 and S2. These methods do not perform well for all types of heart sounds, especially in the presence of high heart rate or in the presence of arrhythmic pathologies. To deal with this problem, two feature extraction methods based on Singular Value Decomposition (SVD) technique are examined. The first method uses the S-Transform and the second method uses the Intrinsic Mode Functions (IMF) calculated by the Empirical Mode Decomposition (EMD) technique. The features are applied to a KNN classifier to estimate the performance of each feature extraction method. Nonlinear features are also tested in order to classify the normal and pathological heart sounds in the presence of systolic murmurs. Processing and recognition signal processing tools based on morphological, time-frequency and nonlinear signal features, were explored in this thesis in order to propose an auto-diagnosis module, robust against noise and applicable in clinical conditions.
|
27 |
Décompositions Modales Empiriques. Contributions à la théorie, l'algorithmie et l'analyse de performancesRilling, Gabriel 14 December 2007 (has links) (PDF)
La Décomposition Modale Empirique (EMD pour « Empirical Mode Decomposition ») est un outil récent de traitement du signal dévolu à l'analyse de signaux non stationnaires et/ou non linéaires. L'EMD produit pour tout signal une décomposition multi-échelles pilotée par les données. Les composantes obtenues sont des formes d'onde oscillantes potentiellement non harmoniques dont les caractéristiques, forme, amplitude et fréquence peuvent varier au cours du temps. L'EMD étant une méthode encore jeune, elle n'est définie que par la sortie d'un algorithme inhabituel, comportant de multiples degrés de liberté et sans fondement théorique solide. Nous nous intéressons dans un premier temps à l'algorithme de l'EMD. Nous étudions d'une part les questions soulevées par les choix de ses degrés de liberté afin d'en établir une implantation. Nous proposons d'autre part des variantes modifiant légèrement ses propriétés et une extension permettant de traiter des signaux à deux composantes. Dans un deuxième temps, nous nous penchons sur les performances de l'EMD. L'algorithme étant initialement décrit dans un contexte de temps continu, mais systématiquement appliqué à des signaux échantillonnés, nous étudions la problématique des effets d'échantillonnage sur la décomposition. Ces effets sont modélisés dans le cas simple d'un signal sinusoïdal et une borne de leur influence est obtenue pour des signaux quelconques. Enfin nous étudions le mécanisme de la décomposition à travers deux situations complémentaires, la décomposition d'une somme de sinusoïdes et celle d'un bruit large bande. Le premier cas permet de mettre en évidence un modèle simple expliquant le comportement de l'EMD dans une très grande majorité des cas de sommes de sinusoïdes. Ce modèle reste valide pour des sinusoïdes faiblement modulées en amplitude et en fréquence ainsi que dans certains cas de sommes d'ondes non harmoniques périodiques. La décomposition de bruits large bande met quant à elle en évidence un comportement moyen de l'EMD proche de celui d'un banc de filtres auto-similaire, analogue à ceux correspondant aux transformées en ondelettes discrètes. Les propriétés du banc de filtres équivalent sont étudiées en détail en fonction des paramètres clés de l'algorithme de l'EMD. Le lien est également établi entre ce comportement en banc de filtres et le modèle développé dans le cas des sommes de sinusoïdes.
|
28 |
Μέθοδοι για ανίχνευση και χαρακτηρισμό βιοσημάτων σε θορυβώδεις χρονοσειρές με βάση το μετασχηματισμό Hilbert-HuangΚαραγιάννης, Αλέξανδρος 10 August 2011 (has links)
Η διπλωματική εργασία με τίτλο «Μέθοδοι για Ανίχνευση και Χαρακτηρισμό Βιοσημάτων σε Θορυβώδεις Χρονοσειρές βασισμένοι στο Μετασχηματισμό Hilbert-Huang» μελετάει ζητήματα που σχετίζονται με βιοϊατρικά σήματα και την ανάλυση τους.
Γίνεται διερεύνηση των διαθέσιμων τεχνικών και μεθόδων ανάλυσης βιοϊατρικών σημάτων, επισημαίνονται τα ιδιαίτερα χαρακτηριστικά των χρονοσειρών που προκύπτουν από την παρατήρηση και καταγραφή των σημάτων και έμφαση δίνεται στη μη στασιμότητα, την μη γραμμικότητα των υποκείμενων φυσικών διεργασιών και την ανάγκη προσαρμοστικότητας της μεθόδου.
Μια μέθοδος που ικανοποιεί αυτές τις απαιτήσεις είναι η εμπειρική μέθοδος αποσύνθεσης η οποία αναλύει ένα σήμα σε ένα σύνολο συνιστωσών (IMFs) από τις οποίες ένα υποσύνολο θεωρείται ότι έχει φυσική σημασία. Επιπλέον, με το μετασχηματισμό Hilbert ανιχνεύονται οι στιγμιαίες συχνότητες και διαμορφώνεται η χρονοσυχνοτική κατανομή του σήματος.
Τα θέματα που διερευνώνται αναφορικά με την εμπειρική μέθοδο αποσύνθεσης αφορούν τη στατιστική σημαντικότητα των IMFs, την αποθορυβοποίηση βιοϊατρικών σημάτων, την εξαγωγή χαρακτηριστικών από ηλεκτροκαρδιογράφημα και την απόδοση της μεθόδου. Ειδικά η απόδοση της εμπειρικής μεθόδου αποσύνθεσης είναι κρίσιμη παράμετρος για συστήματα με περιορισμένους πόρους όπως είναι οι κόμβοι ασύρματων δικτύων αισθητήρων ή τα ενσωματωμένα συστήματα.
Η μοντελοποίηση μεθόδων που υλοποιούνται στο επίπεδο κόμβων ασύρματου δικτύου αισθητήρων είναι απαραίτητη για τη βέλτιστη διαχείριση πόρων και τον προγραμματισμό διεργασιών ώστε να μην διαταραχθεί η λειτουργία και λειτουργικότητα του συστήματος / This diploma thesis entitled "Methods for Identification and Characterization of Biosignals in Noise corrupted Time Series based on Hilbert-Huang Transform " studies issues concerning biomedical signal analysis.
There is a review of the available techniques and methods for biomedical signal analysis pointing at certain characteristics of biomedical time series such as non stationarity, the non linearity of the underlying physical process and the need for the adaptive nature of the analysis method.
One method that meets these requirements is considered to be the Empirical Mode Decomposition (EMD) which decomposes a signal into a set of components (IMFs) that a subset of them is believed to have a physical meaning. Application of Hilbert Transform on these IMFs provides the instantaneous frequencies and forms the time-frequency distribution of the signal.
Issues studied are related to the statistical significance of the IMFs, denoising of biomedical signals, characteristics extraction and feature selection out of the electrocardiogram as well as the performance of the method. Particularly, the performance of empirical mode decomposition is considered to be a critical parameter especially in the case of implementation on nodes of wireless sensor networks or generally embedded systems due to the limited amount of resources available onboard.
Modeling method's performance and demand for resources is a significant task facilitating the optimum resource management and task execution schedule of these systems.
|
29 |
Atenua??o de ru?dos coerentes utilizando decomposi??o em modos emp?ricosAmorim, Felipe Zumba 23 October 2010 (has links)
Made available in DSpace on 2014-12-17T14:08:40Z (GMT). No. of bitstreams: 1
FelipeZA_DISSERT.PDF: 5156580 bytes, checksum: cf88acbbf99c9d93a555a758d3e21bf5 (MD5)
Previous issue date: 2010-10-23 / The seismic processing technique has the main objective to provide adequate picture of geological structures from subsurface of sedimentary basins. Among the key steps of this process is the enhancement of seismic reflections by filtering unwanted signals, called seismic noise, the improvement of signals of interest and the application of imaging procedures. The seismic noise may appear random or coherent. This dissertation will present a technique to attenuate coherent noise, such as ground roll and multiple reflections, based on Empirical Mode Decomposition method. This method will be applied to decompose the seismic trace into Intrinsic Mode Functions. These functions have the properties of being symmetric, with local mean equals zero and the same number of zero-crossing and extremes. The developed technique was tested on synthetic and real data, and the results were considered encouraging / O processamento s?smico tem como principal objetivo fornecer imagem adequada das estruturas geol?gicas da sub-superf?cie de bacias sedimentares. Dentre as etapas fundamentais deste processamento est? o enriquecimento das reflex?es s?smicas atrav?s de filtragem de sinais indesej?veis, chamados de ru?dos, a amplifica??o de sinais de interesse e a aplica??o de processos de imageamento. Os ru?dos s?smicos podem aparecer de forma aleat?ria ou coerente. Nesta disserta??o ser? apresentado uma t?cnica para atenuar ru?dos coerentes, como o ground roll e as reflex?es m?ltiplas, baseado na Decomposi??o em Modos Emp?ricos. Este m?todo consiste em decompor o tra?o s?smico em Fun??es de Modo Intr?nseco, que s?o fun??es sim?tricas com m?dia local igual a zero e mesmo n?mero de zeros e extremos. A t?cnica desenvolvida foi testado em dados sint?ticos e reais, e os resultados obtidos foram considerados encorajadores
|
30 |
Model-driven Time-varying Signal Analysis and its Application to Speech ProcessingJanuary 2016 (has links)
abstract: This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but without requiring independent basis functions; the significance of this work is demonstrated with speech vowels.
A fully automated Vowel Space Area (VSA) computation method is proposed that can be applied to any type of speech. It is shown that the VSA provides an efficient and reliable measure and is correlated to speech intelligibility. A clinical tool that incorporates the automated VSA was proposed for evaluation and treatment to be used by speech language pathologists. Two exploratory studies are performed using two databases by analyzing mean formant trajectories in healthy speech for a wide range of speakers, dialects, and coarticulation contexts. It is shown that phonemes crowded in formant space can often have distinct trajectories, possibly due to accurate perception.
A theory for analyzing time-varying signals models with amplitude modulation and frequency modulation is developed. Examples are provided that demonstrate other possible signal model decompositions with independent basis functions and corresponding physical interpretations. The Hilbert transform (HT) and the use of the analytic form of a signal are motivated, and a proof is provided to show that a signal can still preserve desirable mathematical properties without the use of the HT. A visualization of the Hilbert spectrum is proposed to aid in the interpretation. A signal demodulation is proposed and used to develop a modified Empirical Mode Decomposition (EMD) algorithm. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2016
|
Page generated in 0.1367 seconds