• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 15
  • 15
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrical lithium-ion battery models based on recurrent neural networks: a holistic approach

Schmitt, Jakob, Horstkötter, Ivo, Bäker, Bernard 15 March 2024 (has links)
As an efficient energy storage technology, lithium-ion batteries play a key role in the ongoing electrification of the mobility sector. However, the required modelbased design process, including hardware in the loop solutions, demands precise battery models. In this work, an encoder-decoder model framework based on recurrent neural networks is developed and trained directly on unstructured battery data to replace time consuming characterisation tests and thus simplify the modelling process. A manifold pseudo-random bit stream dataset is used for model training and validation. A mean percentage error (MAPE) of 0.30% for the test dataset attests the proposed encoder-decoder model excellent generalisation capabilities. Instead of the recursive one-step prediction prevalent in the literature, the stage-wise trained encoder-decoder framework can instantaneously predict the battery voltage response for 2000 time steps and proves to be 120 times more time-efficient on the test dataset. Accuracy, generalisation capability and time efficiency of the developed battery model enable a potential online anomaly detection, power or range prediction. The fact that, apart from the initial voltage level, the battery model only relies on the current load as input and thus requires no estimated variables such as the state-of-charge (SOC) to predict the voltage response holds the potential of a battery ageing independent LIB modelling based on raw BMS signals. The intrinsically ageingindependent battery model is thus suitable to be used as a digital battery twin in virtual experiments to estimate the unknown battery SOH on purely BMS data basis.
12

Strojový překlad pomocí umělých neuronových sítí / Machine Translation Using Artificial Neural Networks

Holcner, Jonáš January 2018 (has links)
The goal of this thesis is to describe and build a system for neural machine translation. System is built with recurrent neural networks - encoder-decoder architecture in particular. The result is a nmt library used to conduct experiments with different model parameters. Results of the experiments are compared with system built with the statistical tool Moses.
13

A Comparative Study of the Quality between Formality Style Transfer of Sentences in Swedish and English, leveraging the BERT model / En jämförande studie av kvaliteten mellan överföring av formalitetsstil på svenska och engelska meningar, med hjälp av BERT-modellen

Lindblad, Maria January 2021 (has links)
Formality Style Transfer (FST) is the task of automatically transforming a piece of text from one level of formality to another. Previous research has investigated different methods of performing FST on text in English, but at the time of this project there were to the author’s knowledge no previous studies analysing the quality of FST on text in Swedish. The purpose of this thesis was to investigate how a model trained for FST in Swedish performs. This was done by comparing the quality of a model trained on text in Swedish for FST, to an equivalent model trained on text in English for FST. Both models were implemented as encoder-decoder architectures, warm-started using two pre-existing Bidirectional Encoder Representations from Transformers (BERT) models, pre-trained on Swedish and English text respectively. The two FST models were fine-tuned for both the informal to formal task as well as the formal to informal task, using the Grammarly’s Yahoo Answers Formality Corpus (GYAFC). The Swedish version of GYAFC was created through automatic machine translation of the original English version. The Swedish corpus was then evaluated on the three criteria meaning preservation, formality preservation and fluency preservation. The results of the study indicated that the Swedish model had the capacity to match the quality of the English model but was held back by the inferior quality of the Swedish corpus. The study also highlighted the need for task specific corpus in Swedish. / Överföring av formalitetsstil syftar på uppgiften att automatiskt omvandla ett stycke text från en nivå av formalitet till en annan. Tidigare forskning har undersökt olika metoder för att utföra uppgiften på engelsk text men vid tiden för detta projekt fanns det enligt författarens vetskap inga tidigare studier som analyserat kvaliteten för överföring av formalitetsstil på svensk text. Syftet med detta arbete var att undersöka hur en modell tränad för överföring av formalitetsstil på svensk text presterar. Detta gjordes genom att jämföra kvaliteten på en modell tränad för överföring av formalitetsstil på svensk text, med en motsvarande modell tränad på engelsk text. Båda modellerna implementerades som kodnings-avkodningsmodeller, vars vikter initierats med hjälp av två befintliga Bidirectional Encoder Representations from Transformers (BERT)-modeller, förtränade på svensk respektive engelsk text. De två modellerna finjusterades för omvandling både från informell stil till formell och från formell stil till informell. Under finjusteringen användes en svensk och en engelsk version av korpusen Grammarly’s Yahoo Answers Formality Corpus (GYAFC). Den svenska versionen av GYAFC skapades genom automatisk maskinöversättning av den ursprungliga engelska versionen. Den svenska korpusen utvärderades sedan med hjälp av de tre kriterierna betydelse-bevarande, formalitets-bevarande och flödes-bevarande. Resultaten från studien indikerade att den svenska modellen hade kapaciteten att matcha kvaliteten på den engelska modellen men hölls tillbaka av den svenska korpusens sämre kvalitet. Studien underströk också behovet av uppgiftsspecifika korpusar på svenska.
14

Demand Forecasting of Outbound Logistics Using Neural Networks

Otuodung, Enobong Paul, Gorhan, Gulten January 2023 (has links)
Long short-term volume forecasting is essential for companies regarding their logistics service operations. It is crucial for logistic companies to predict the volumes of goods that will be delivered to various centers at any given day, as this will assist in managing the efficiency of their business operations. This research aims to create a forecasting model for outbound logistics volumes by utilizing design science research methodology in building 3 machine-learning models and evaluating the performance of the models . The dataset is provided by Tetra Pak AB, the World's leading food processing and packaging solutions company,. Research methods were mainly quantitative, based on statistical data and numerical calculations. Three algorithms were implemented: which are encoder–decoder networks based on Long Short-Term Memory (LSTM), Convolutional Long Short-Term Memory (ConvLSTM), and Convolutional Neural Network Long ShortTerm Memory (CNN-LSTM). Comparisons are made with the average Root Mean Square Error (RMSE) for six distribution centers (DC) of Tetra Pak. Results obtained from encoder–decoder networks based on LSTM are compared to results obtained by encoder–decoder networks based on ConvLSTM and CNN-LSTM. The three algorithms performed very well, considering the loss of the Train and Test with our multivariate time series dataset. However, based on the average score of the RMSE, there are slight differences between algorithms for all DCs.
15

Medical image captioning based on Deep Architectures / Medicinsk bild textning baserad på Djupa arkitekturer

Moschovis, Georgios January 2022 (has links)
Diagnostic Captioning is described as “the automatic generation of a diagnostic text from a set of medical images of a patient collected during an examination” [59] and it can assist inexperienced doctors and radiologists to reduce clinical errors or help experienced professionals increase their productivity. In this context, tools that would help medical doctors produce higher quality reports in less time could be of high interest for medical imaging departments, as well as significantly impact deep learning research within the biomedical domain, which makes it particularly interesting for people involved in industry and researchers all along. In this work, we attempted to develop Diagnostic Captioning systems, based on novel Deep Learning approaches, to investigate to what extent Neural Networks are capable of performing medical image tagging, as well as automatically generating a diagnostic text from a set of medical images. Towards this objective, the first step is concept detection, which boils down to predicting the relevant tags for X-RAY images, whereas the ultimate goal is caption generation. To this end, we further participated in ImageCLEFmedical 2022 evaluation campaign, addressing both the concept detection and the caption prediction tasks by developing baselines based on Deep Neural Networks; including image encoders, classifiers and text generators; in order to get a quantitative measure of my proposed architectures’ performance [28]. My contribution to the evaluation campaign, as part of this work and on behalf of NeuralDynamicsLab¹ group at KTH Royal Institute of Technology, within the school of Electrical Engineering and Computer Science, ranked 4th in the former and 5th in the latter task [55, 68] among 12 groups included within the top-10 best performing submissions in both tasks. / Diagnostisk textning avser automatisk generering från en diagnostisk text från en uppsättning medicinska bilder av en patient som samlats in under en undersökning och den kan hjälpa oerfarna läkare och radiologer, minska kliniska fel eller hjälpa erfarna yrkesmän att producera diagnostiska rapporter snabbare [59]. Därför kan verktyg som skulle hjälpa läkare och radiologer att producera rapporter av högre kvalitet på kortare tid vara av stort intresse för medicinska bildbehandlingsavdelningar, såväl som leda till inverkan på forskning om djupinlärning, vilket gör den domänen särskilt intressant för personer som är involverade i den biomedicinska industrin och djupinlärningsforskare. I detta arbete var mitt huvudmål att utveckla system för diagnostisk textning, med hjälp av nya tillvägagångssätt som används inom djupinlärning, för att undersöka i vilken utsträckning automatisk generering av en diagnostisk text från en uppsättning medi-cinska bilder är möjlig. Mot detta mål är det första steget konceptdetektering som går ut på att förutsäga relevanta taggar för röntgenbilder, medan slutmålet är bildtextgenerering. Jag deltog i ImageCLEF Medical 2022-utvärderingskampanjen, där jag deltog med att ta itu med både konceptdetektering och bildtextförutsägelse för att få ett kvantitativt mått på prestandan för mina föreslagna arkitekturer [28]. Mitt bidrag, där jag representerade forskargruppen NeuralDynamicsLab² , där jag arbetade som ledande forskningsingenjör, placerade sig på 4:e plats i den förra och 5:e i den senare uppgiften [55, 68] bland 12 grupper som ingår bland de 10 bästa bidragen i båda uppgifterna.

Page generated in 0.0685 seconds