Spelling suggestions: "subject:"endoreversible thermodynamik"" "subject:"endoreversible termodynamik""
1 |
A graphic based interface to Endoreversible ThermodynamicsWagner, Katharina 09 September 2008 (has links) (PDF)
The object of this thesis is a graphic based interface to endoreversible thermodynamics.
It is meant to enable the user to visually create endoreversible systems
and add the properties of the system by choosing features from a list and in form
of equations. Then an equation system is built and the power output and efficiency
of the endoreversible system is calculated and plotted. To illustrate the functions of
the interface, some examples of heat and chemical engines are discussed.
|
2 |
A graphic based interface to Endoreversible ThermodynamicsWagner, Katharina 07 July 2008 (has links)
The object of this thesis is a graphic based interface to endoreversible thermodynamics.
It is meant to enable the user to visually create endoreversible systems
and add the properties of the system by choosing features from a list and in form
of equations. Then an equation system is built and the power output and efficiency
of the endoreversible system is calculated and plotted. To illustrate the functions of
the interface, some examples of heat and chemical engines are discussed.
|
3 |
An Extension to Endoreversible Thermodynamics for Multi-Extensity Fluxes and Chemical Reaction ProcessesWagner, Katharina 27 June 2014 (has links) (PDF)
In this thesis extensions to the formalism of endoreversible thermodynamics for multi-extensity fluxes and chemical reactions are introduced. These extensions make it possible to model a great variety of systems which could not be investigated with standard endoreversible thermodynamics. Multi-extensity fluxes are important when studying processes with matter fluxes or processes in which volume and entropy are exchanged between subsystems. For including reversible as well as irreversible chemical reaction processes a new type of subsystems is introduced - the so called reactor. It is similar to endoreversible engines, because the fluxes connected to it are balanced. The difference appears in the balance equations for particle numbers, which contain production or destruction terms, and in the possible entropy production in the reactor.
Both extensions are then applied to an endoreversible fuel cell model. The chemical reactions in the anode and cathode of the fuel cell are included with the newly introduced subsystem -- the reactor. For the transport of the reactants and products as well as the proton transport through the electrolyte membrane, the multi-extensity fluxes are used. This fuel cell model is then used to calculate power output, efficiency and cell voltage of a fuel cell with irreversibilities in the proton and electron transport. It directly connects the pressure and temperature dependencies of the cell voltage with the dissipation due to membrane resistance. Additionally, beside the listed performance measures it is possible to quantify and localize the entropy production and dissipated heat with only this one model. / In dieser Arbeit erweitere ich den Formalismus der endoreversiblen Thermodynamik, um Flüsse mit mehr als einer extensiven Größe sowie chemische Reaktionsprozesse modellieren zu können. Mit Hilfe dieser Erweiterungen eröffnen sich zahlreiche neue Anwendungsmöglichkeiten für endoreversible Modelle. Flüsse mit mehreren extensiven Größen sind für die Betrachtung von Masseströmen ebenso nötig wie für Prozesse, bei denen sowohl Volumen als auch Entropie zwischen zwei Teilsystem ausgetauscht werden. Für sowohl reversibel wie auch irreversibel geführte chemische Reaktionsprozesse wird ein neues Teilsystem - der "Reaktor" - vorgestellt, welches sich ähnlich wie endoreversible Maschinen durch Bilanzgleichungen auszeichnet. Der Unterschied zu den Maschinen besteht in den Produktions- bzw. Vernichtungstermen in den Teilchenzahlbilanzen sowie der möglichen Entropieproduktion innerhalb des Reaktors.
Beide Erweiterungen finden dann in einem endoreversiblen Modell einer Brennstoffzelle Anwendung. Dabei werden Flüsse mehrerer gekoppelter Extensitäten für den Zustrom von Wasserstoff und Sauerstoff sowie für den Protonentransport durch die Elektrolytmembran benötigt. Chemische Reaktionen treten in der Anode und Kathode der Brennstoffzelle auf. Diese werden mit dem neu eingeführten Teilsystem, dem Reaktor, eingebunden. Mit Hilfe des Modells werden dann Wirkungsgrad, Zellspannung und Leistung einer Brennstoffzelle unter Berücksichtigung der Partialdrücke der Substanzen, der Temperatur sowie der Dissipation beim Protonentransport berechnet. Dabei zeigt sich, dass experimentelle Daten für die Zellspannung sowohl qualitativ als auch näherungsweise quantitativ durch das Modell abgebildet werden können. Der Vorteil des endoreversiblen Modells liegt dabei in der Möglichkeit, mit nur einem Modell neben den genannten Kenngrößen auch die abgegebene Wärme sowie die Entropieproduktion zu quantifizieren und den einzelnen Teilprozessen zuzuordnen.
|
4 |
Optimal Control of Stirling EnginesPaul, Raphael Rüdiger 07 January 2021 (has links)
In dieser Arbeit wird eine Methode zur Leistungsoptimierung der Kolbenpfade von Stirling-Motoren entwickelt, die auf der Theorie der optimalen Steuerung beruht. Für die effiziente praktische Umsetzbarkeit ist dabei ein geringer numerischer Aufwand des eingesetzten thermodynamischen Modells entscheidend. In detaillierten Modellen von Stirling-Motoren resultiert ein Großteil des numerischen Aufwandes aus der Beschreibung des Regenerators, einem gasdurchströmten Kurzzeit-Wärmespeicher. Im ersten Teil der Arbeit wird der Fokus deshalb auf die Entwicklung eines effizienten Regeneratormodells gelegt. Hierbei wird ein neuartiger Ansatz gewählt, der sich aus der Perspektive der Endoreversiblen Thermodynamik ergibt: Der Regenerator wird als endoreversibles Teilsystem betrachtet, welches an zwei Kontaktpunkten durch irreversible Interaktionen mit den benachbarten Teilsystemen Gasteilchen, Entropie und Energie austauscht. Innere Irreversibilitäten des Regenerators werden als Entropiequellterme in die Modellierung einbezogen. Im zweiten Teil der Arbeit wird dann ein iterativer Optimierungsalgorithmus erarbeitet, der die Leistung von Stirling-Motoren unter periodischen Randbedingungen für eine vorgegebene Periodendauer maximieren kann. Der Algorithmus startet mit vorgegeben initialen Kolbenpfaden, die im Laufe der Iterationen graduell verschoben und so den optimalen Pfaden angenähert werden. Um diese graduelle Verschiebung zu bestimmen, muss in jedem Iterationsschritt neben dem Differentialgleichungssystem, das die Thermodynamik des Stirling-Motors beschreibt, ein konjugiertes Differentialgleichungssystem gelöst werden. Der erarbeitete Algorithmus nutzt dabei die Existenz eines Grenzzyklus des konjugierten Differentialgleichungssystems unter Zeitumkehr zu dessen Lösung für periodische Randbedingungen aus. Unter Verwendung des endoreversiblen Regeneratormodells wird mit diesem iterativen Optimierungsalgorithmus die Theorie der optimalen Steuerung erstmals für die Kolbenpfadoptimierung eines beispielhaften Stirling-Motors in α-Konfiguration eingesetzt. / In this thesis a method for power optimization of the piston paths of Stirling engines is developed, which is based on Optimal Control Theory. For the efficient practical feasibility of this task, low numerical effort of the utilized thermodynamic model is crucial. In detailed models of Stirling engines, a large part of the numerical effort results from the description of the regenerator, which is a short-time heat storage. Therefore, in the first part of this thesis the focus is on the development of an efficient regenerator model. Here, a novel ansatz is chosen which arises from the perspective of Endoreversible Thermodynamics: The regenerator is described as an endoreversible subsystem that has two contact points, at which it exchanges particles, entropy, and energy with the adjacent subsystems through irreversible interactions. Internal irreversibilities of the regenerator are included in the model as entropy source terms. In the second part of the thesis an iterative optimization algorithm is worked out, which can maximize the power output of Stirling engines under periodic boundary conditions for given cycle time. The algorithm starts with predefined initial piston paths, which are gradually shifted over the course of the iterations and thus approach the optimal paths. To determine this gradual shift, in every iteration not only the system of differential equations describing the thermodynamics of the Stirling engine needs to be solved, but also a conjugate system of differential equations. The algorithm here exploits the existence of a limit cycle of the conjugate system under time reversal to solve it for periodic boundary conditions. By means of the endoreversible regenerator model, with this iterative optimization algorithm Optimal Control Theory is applied for the first time to optimize the piston paths of an exemplary Stirling engine in α-configuration.
|
5 |
Stochastic Fluctuations in Endoreversible SystemsSchwalbe, Karsten 20 February 2017 (has links) (PDF)
In dieser Arbeit wird erstmalig der Einfluss stochastischer Schwankungen auf endoreversible Modelle untersucht. Hierfür wird die Novikov-Maschine mit drei verschieden Wärmetransportgesetzen (Newton, Fourier, asymmetrisch) betrachtet. Während die maximale verrichtete Arbeit und der dazugehörige Wirkungsgrad recht einfach im Falle konstanter Wärmebadtemperaturen hergeleitet werden können, ändern sich dies, falls die Temperaturen stochastisch fluktuieren können. Im letzteren Fall muss die stochastische optimale Kontrolltheorie genutzt werden, um das Maximum der zu erwartenden Arbeit und die dazugehörige Kontrollstrategie zu ermitteln. Im Allgemeinen kann die Lösung derartiger Probleme auf eine nichtlineare, partielle Differentialgleichung, welche an eine Optimierung gekoppelt ist, zurückgeführt werden. Diese Gleichung wird stochastische Hamilton-Jacobi-Bellman-Gleichung genannt. Allerdings können, wie in dieser Arbeit dargestellt, die Berechnungen vereinfacht werden, wenn man annimmt, dass die Fluktuationen unabhängig von der betrachteten Kontrollvariablen sind. In diesem Fall zeigen analytische Betrachtungen, dass die Gleichungen für die verrichtete Arbeit and den Wirkungsgrad ihre ursprüngliche Form behalten, aber manche Terme müssen durch entsprechende Zeitmittel bzw. Erwartungswerte ersetzt werden, jeweils abhängig von der betrachteten Art der Kontrolle. Basierend auf einer Analyse der Leistungsparameter im Falle einer Gleichverteilung der heißen Temperatur der Novikov-Maschine können Schlussfolgerungen auf deren Monotonieverhalten gezogen werden. Der Vergleich verschiedener, zeitunabhängiger, symmetrischer Verteilungen führt zu einer bis dato unbekannten Erweiterung des Curzon-Ahlborn-Wirkungsgrades im Falle kleiner Schwankungen. Weiterhin wird eine Analyse einer Novikov-Maschine mit asymmetrischen Wärmetransport, bei der das Verhalten der heißen Temperatur durch einen Ornstein-Uhlenbeck-Prozess beschrieben wird, durchgeführt. Abschließend wird eine Novikov-Maschine mit Fourierscher Wärmeleitung, bei der die Dynamik der heißen Temperatur von der Kontrollvariable abhängt, betrachtet. Durch das Lösen der Hamilton-Jacobi-Bellman-Gleichung können neuartige Schlussfolgerungen gezogen werden, wie derartige Systeme optimal zu steuern sind. / In this thesis, the influence of stochastic fluctuations on the performance of endoreversible engines is investigated for the first time. For this, a Novikov-engine with three different heat transport laws (Newtonian, Fourier, asymmetric) is considered. While the maximum work output and corresponding efficiency can be deduced easily in the case of constant heat bath temperatures, this changes, if these temperatures are allowed to fluctuate stochastically. In the latter case, stochastic optimal control theory has to be used to find the maximum of the expected work output and the corresponding control policy. In general, solving such problems leads to a non-linear, partial differential equation coupled to an optimization, called the stochastic Hamilton-Jacobi-Bellman equation. However, as presented in this thesis, calculations can be simplified, if one assumes that the fluctuations are independent of the considered control variable. In this case, analytic considerations show that the equations for performance measures like work output and efficiency keep their original form, but terms have to be replaced by appropriate time averages and expectation values, depending on the considered control type. Based on an analysis of the performance measures in the case of a uniform distribution of the hot temperature of the Novikov engine, conclusions on their monotonicity behavior are drawn. The comparison of several, time independent, symmetric distributions reveals a to date unknown extension to the Curzon-Ahlborn efficiency in the case of small fluctuations. Furthermore, an analysis of a Novikov engine with asymmetric heat transport, where the behavior of the hot temperature is described by an Ornstein-Uhlenbeck process, is performed. Finally, a Novikov engine with Fourier heat transport is considered, where the dynamics of the hot temperature depends on the control variable. By solving the corresponding Hamilton-Jacobi-Bellman equation, new conclusions how to optimally control such systems are drawn.
|
6 |
Stochastic Fluctuations in Endoreversible SystemsSchwalbe, Karsten 01 February 2017 (has links)
In dieser Arbeit wird erstmalig der Einfluss stochastischer Schwankungen auf endoreversible Modelle untersucht. Hierfür wird die Novikov-Maschine mit drei verschieden Wärmetransportgesetzen (Newton, Fourier, asymmetrisch) betrachtet. Während die maximale verrichtete Arbeit und der dazugehörige Wirkungsgrad recht einfach im Falle konstanter Wärmebadtemperaturen hergeleitet werden können, ändern sich dies, falls die Temperaturen stochastisch fluktuieren können. Im letzteren Fall muss die stochastische optimale Kontrolltheorie genutzt werden, um das Maximum der zu erwartenden Arbeit und die dazugehörige Kontrollstrategie zu ermitteln. Im Allgemeinen kann die Lösung derartiger Probleme auf eine nichtlineare, partielle Differentialgleichung, welche an eine Optimierung gekoppelt ist, zurückgeführt werden. Diese Gleichung wird stochastische Hamilton-Jacobi-Bellman-Gleichung genannt. Allerdings können, wie in dieser Arbeit dargestellt, die Berechnungen vereinfacht werden, wenn man annimmt, dass die Fluktuationen unabhängig von der betrachteten Kontrollvariablen sind. In diesem Fall zeigen analytische Betrachtungen, dass die Gleichungen für die verrichtete Arbeit and den Wirkungsgrad ihre ursprüngliche Form behalten, aber manche Terme müssen durch entsprechende Zeitmittel bzw. Erwartungswerte ersetzt werden, jeweils abhängig von der betrachteten Art der Kontrolle. Basierend auf einer Analyse der Leistungsparameter im Falle einer Gleichverteilung der heißen Temperatur der Novikov-Maschine können Schlussfolgerungen auf deren Monotonieverhalten gezogen werden. Der Vergleich verschiedener, zeitunabhängiger, symmetrischer Verteilungen führt zu einer bis dato unbekannten Erweiterung des Curzon-Ahlborn-Wirkungsgrades im Falle kleiner Schwankungen. Weiterhin wird eine Analyse einer Novikov-Maschine mit asymmetrischen Wärmetransport, bei der das Verhalten der heißen Temperatur durch einen Ornstein-Uhlenbeck-Prozess beschrieben wird, durchgeführt. Abschließend wird eine Novikov-Maschine mit Fourierscher Wärmeleitung, bei der die Dynamik der heißen Temperatur von der Kontrollvariable abhängt, betrachtet. Durch das Lösen der Hamilton-Jacobi-Bellman-Gleichung können neuartige Schlussfolgerungen gezogen werden, wie derartige Systeme optimal zu steuern sind. / In this thesis, the influence of stochastic fluctuations on the performance of endoreversible engines is investigated for the first time. For this, a Novikov-engine with three different heat transport laws (Newtonian, Fourier, asymmetric) is considered. While the maximum work output and corresponding efficiency can be deduced easily in the case of constant heat bath temperatures, this changes, if these temperatures are allowed to fluctuate stochastically. In the latter case, stochastic optimal control theory has to be used to find the maximum of the expected work output and the corresponding control policy. In general, solving such problems leads to a non-linear, partial differential equation coupled to an optimization, called the stochastic Hamilton-Jacobi-Bellman equation. However, as presented in this thesis, calculations can be simplified, if one assumes that the fluctuations are independent of the considered control variable. In this case, analytic considerations show that the equations for performance measures like work output and efficiency keep their original form, but terms have to be replaced by appropriate time averages and expectation values, depending on the considered control type. Based on an analysis of the performance measures in the case of a uniform distribution of the hot temperature of the Novikov engine, conclusions on their monotonicity behavior are drawn. The comparison of several, time independent, symmetric distributions reveals a to date unknown extension to the Curzon-Ahlborn efficiency in the case of small fluctuations. Furthermore, an analysis of a Novikov engine with asymmetric heat transport, where the behavior of the hot temperature is described by an Ornstein-Uhlenbeck process, is performed. Finally, a Novikov engine with Fourier heat transport is considered, where the dynamics of the hot temperature depends on the control variable. By solving the corresponding Hamilton-Jacobi-Bellman equation, new conclusions how to optimally control such systems are drawn.
|
7 |
Endoreversible Thermodynamics of a Hydraulic Recuperation SystemMasser, Robin 23 May 2019 (has links)
In dieser Arbeit verwende ich den Formalismus der endoreversiblen Thermodynamik um ein hydraulisches Rekuperationssystem für Nutzfahrzeuge zu modellieren und zu untersuchen. Dafür führe ich verlustbehaftete Übergänge extensiver Größen zwischen Teilsystemen eines Systems ein. Diese können einerseits der Modellierung von Leckagen und Reibungsverlusten, welche als Partikel- oder Drehmomentverluste dargestellt würden, dienen. Andererseits ermöglichen sie die Modellierung einer endoreversiblen Maschine, welche – durch Definition eines solchen verlustbehafteten, internen Überganges – ein gegebenes Wirkungsgradkennfeld und daraus resultierende Entropieproduktion inne hat. Diese wird infolge zur Modellierung der Hydraulikeinheit des Rekuperationssystems verwendet. Desweiteren basiert die Beschreibung des Rekuperationssystems auf der Modellierung der Hydraulikflüssigkeit als Van-der-Waals-Fluid, sodass Druckverluste im endoreversiblen Sinne konsistent berücksichtigt werden können. Von gegebenen Materialparamtern werden die dafür notwendigen Van-der-Waals-Parameter hergeleitet. Weitere Aspekte sind Wärmeverluste an die Umgebung sowie Wärmeübergänge zwischen Teilsystemen. Auf Grundlage realer Fahrdaten der Nutzfahrzeuge werden verschiedene dynamische und thermodynamische Effekte im Rekuperationssystem analysiert. Ihr Einfluss auf die resultierenden energetischen Einsparungen beim Abbremsen und Beschleunigen wird durch Variation zugehöriger Parameter aufgezeigt. Zuletzt wird mit einem vereinfachten Modell ohne Druck- und Wärmeverluste, aber unter Einbeziehung des Verbrennungsmotors des Fahrzeuges, eine Optimierung der Steuerung des hydraulischen Rekuperationssystems mit Hinblick auf minimalen Kraftstoffverbrauch durchgeführt. Hier zeigt sich eine erhebliche Verbesserung durch die Leistungsaufteilung zwischen Verbrennungsmotor und Rekuperationssystem nach deren Betriebsbereichen mit maximalem Wirkungsgrad. / In this work I use the formalism of endoreversible thermodynamics to model and investigate a hydraulic recuperation system for commercial vehicles. For that, I introduce lossy transfers of extensive quantities between subsystems of an endoreversible system. On the one hand, these allow modeling of leakages and friction losses, which can be represented as particle or torque losses. On the other hand, they can be used as internal extensity transfers in endoreversible engines which, as a result, have a given efficiency or efficiency map and among other things give an expression for their entropy production. Such an engine is used to model the hydraulic unit of the recuperation system. Furthermore, the description of the recuperation system is based on the modeling of the hydraulic fluid as a van der Waals fluid, so that pressure losses can be taken into account in a consistent endoreversible fashion. From given material parameters the necessary van der Waals parameters are derived. Other aspects of the modeling include heat losses to the environment and heat transfers between subsystems. On the basis of real driving data, various dynamic and thermodynamic effects within the recuperation system are observed and their influence as well as the influence of selected parameters on the resulting energy savings for both acceleration and deceleration are shown. Finally, using a simplified model neglecting pressure and heat losses, but including the internal combustion engine of the vehicle, an optimization of the control strategy for the hydraulic recuperation system with regard to minimum fuel consumption is performed. Here, a significant improvement due to a power distribution between combustion engine and recuperation system according to their high efficiency operating ranges can be achieved.
|
8 |
An Extension to Endoreversible Thermodynamics for Multi-Extensity Fluxes and Chemical Reaction ProcessesWagner, Katharina 20 June 2014 (has links)
In this thesis extensions to the formalism of endoreversible thermodynamics for multi-extensity fluxes and chemical reactions are introduced. These extensions make it possible to model a great variety of systems which could not be investigated with standard endoreversible thermodynamics. Multi-extensity fluxes are important when studying processes with matter fluxes or processes in which volume and entropy are exchanged between subsystems. For including reversible as well as irreversible chemical reaction processes a new type of subsystems is introduced - the so called reactor. It is similar to endoreversible engines, because the fluxes connected to it are balanced. The difference appears in the balance equations for particle numbers, which contain production or destruction terms, and in the possible entropy production in the reactor.
Both extensions are then applied to an endoreversible fuel cell model. The chemical reactions in the anode and cathode of the fuel cell are included with the newly introduced subsystem -- the reactor. For the transport of the reactants and products as well as the proton transport through the electrolyte membrane, the multi-extensity fluxes are used. This fuel cell model is then used to calculate power output, efficiency and cell voltage of a fuel cell with irreversibilities in the proton and electron transport. It directly connects the pressure and temperature dependencies of the cell voltage with the dissipation due to membrane resistance. Additionally, beside the listed performance measures it is possible to quantify and localize the entropy production and dissipated heat with only this one model. / In dieser Arbeit erweitere ich den Formalismus der endoreversiblen Thermodynamik, um Flüsse mit mehr als einer extensiven Größe sowie chemische Reaktionsprozesse modellieren zu können. Mit Hilfe dieser Erweiterungen eröffnen sich zahlreiche neue Anwendungsmöglichkeiten für endoreversible Modelle. Flüsse mit mehreren extensiven Größen sind für die Betrachtung von Masseströmen ebenso nötig wie für Prozesse, bei denen sowohl Volumen als auch Entropie zwischen zwei Teilsystem ausgetauscht werden. Für sowohl reversibel wie auch irreversibel geführte chemische Reaktionsprozesse wird ein neues Teilsystem - der "Reaktor" - vorgestellt, welches sich ähnlich wie endoreversible Maschinen durch Bilanzgleichungen auszeichnet. Der Unterschied zu den Maschinen besteht in den Produktions- bzw. Vernichtungstermen in den Teilchenzahlbilanzen sowie der möglichen Entropieproduktion innerhalb des Reaktors.
Beide Erweiterungen finden dann in einem endoreversiblen Modell einer Brennstoffzelle Anwendung. Dabei werden Flüsse mehrerer gekoppelter Extensitäten für den Zustrom von Wasserstoff und Sauerstoff sowie für den Protonentransport durch die Elektrolytmembran benötigt. Chemische Reaktionen treten in der Anode und Kathode der Brennstoffzelle auf. Diese werden mit dem neu eingeführten Teilsystem, dem Reaktor, eingebunden. Mit Hilfe des Modells werden dann Wirkungsgrad, Zellspannung und Leistung einer Brennstoffzelle unter Berücksichtigung der Partialdrücke der Substanzen, der Temperatur sowie der Dissipation beim Protonentransport berechnet. Dabei zeigt sich, dass experimentelle Daten für die Zellspannung sowohl qualitativ als auch näherungsweise quantitativ durch das Modell abgebildet werden können. Der Vorteil des endoreversiblen Modells liegt dabei in der Möglichkeit, mit nur einem Modell neben den genannten Kenngrößen auch die abgegebene Wärme sowie die Entropieproduktion zu quantifizieren und den einzelnen Teilprozessen zuzuordnen.
|
Page generated in 0.0598 seconds