• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares

Belchior, Pedro 01 March 2013 (has links)
Submitted by isabela.moljf@hotmail.com (isabela.moljf@hotmail.com) on 2016-12-19T12:23:36Z No. of bitstreams: 1 pedrobelchior.pdf: 465178 bytes, checksum: 997aa94857f2f7478cb38dc9980463d3 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-02T11:10:14Z (GMT) No. of bitstreams: 1 pedrobelchior.pdf: 465178 bytes, checksum: 997aa94857f2f7478cb38dc9980463d3 (MD5) / Made available in DSpace on 2017-02-02T11:10:14Z (GMT). No. of bitstreams: 1 pedrobelchior.pdf: 465178 bytes, checksum: 997aa94857f2f7478cb38dc9980463d3 (MD5) Previous issue date: 2013-03-01 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As soluções de energia mínima são de nidas como as soluções que indicam valor ín fimo para imagem do funcional energia associado a uma classe de problemas variacionais não lineares −∆u = g(u) u ∈ H1(RN) Oobjetivodestetrabalhoémostrarqueatravésdassoluçõesdeenergiamínimadaequação não linear acima, o valor do passo da Montanha sem a condição de Palais Smaile é um ponto crítico. Para isto provaremos que sob certas hipóteses para a função g e sob um vínculo é possível obter uma solução positiva para o problema acima, esfericamente simétrica e decrescente com o raio. Em seguida mostra-se que a solução sujeita a esse vínculo é a que possui o menor valor no funcional energia dentre todas as soluções do problema acima aplicadas no mesmo funcional. Neste contexto, garante-se a existência de pelo menos uma solução de energia mínima. Os resultados citados foram estudados em [2] e [1]. / The least energy solutions are de ned as solutions that indicate infi mum value to the energy functional image associated with a class of nonlinear variational problems −∆u = g(u) u ∈ H1(RN) The objective of this work is to show that through least energy solutions of nonlinear equation above, the Mountain pass value without the Palais Smale condition is critical point. For this, we will prove that under certain hypotheses on the function g and under a constraint assumption is possible to obtain a positive solution for the above problem, spherically symmetric and decreasing with the radius. Then the solution of the problem subject to this constraint has the lowest value in the energy functional among all solutions of the above problem applied in the same functional. In this context, it guarantee the existence of at least one solution of the least energy. The above results were obtained in [2] and [1]. Key Words: Least Energy, Mountain Pass, Minimization, Minimum of the Action.
2

Caracterização do nível crítico para as soluções de energia mínima de uma classe de problemas elípticos semi-lineares

Belchior, Pedro 01 March 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-29T15:09:36Z No. of bitstreams: 1 pedrobelchior.pdf: 465178 bytes, checksum: 997aa94857f2f7478cb38dc9980463d3 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-29T19:48:54Z (GMT) No. of bitstreams: 1 pedrobelchior.pdf: 465178 bytes, checksum: 997aa94857f2f7478cb38dc9980463d3 (MD5) / Made available in DSpace on 2017-05-29T19:48:54Z (GMT). No. of bitstreams: 1 pedrobelchior.pdf: 465178 bytes, checksum: 997aa94857f2f7478cb38dc9980463d3 (MD5) Previous issue date: 2013-03-01 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As soluções de energia mínima são definidas como as soluções que indicam valor ínfimo para imagem do funcional energia associado a uma classe de problemas variacionais não lineares -Δu = g(u) u ∈ H1(RN). O objetivo deste trabalho é mostrar que através das soluções de energia mínima da equação não linear acima, o valor do passo da Montanha sem a condição de Palais Smaile é um ponto crítico. Para isto provaremos que sob certas hipóteses para a função g e sob um vínculo é possível obter uma solução positiva para o problema acima, esfericamente simétrica e decrescente com o raio. Em seguida mostra-se que a solução sujeita a esse vínculo é a que possui o menor valor no funcional energia dentre todas as soluções do problema acima aplicadas no mesmo funcional. Neste contexto, garante-se a existência de pelo menos uma solução de energia mínima. Os resultados citados foram estudados em [2] e [1]. / The least energy solutions are defined as solutions that indicate infimum value to the energy functional image associated with a class of nonlinear variational problems -Δu = g(u) u ∈ H1(RN). The objective of this work is to show that through least energy solutions of nonlinear equation above, the Mountain pass value without the Palais Smale condition is critical point. For this, we will prove that under certain hypotheses on the function g and under a constraint assumption is possible to obtain a positive solution for the above problem, spherically symmetric and decreasing with the radius. Then the solution of the problem subject to this constraint has the lowest value in the energy functional among all solutions of the above problem applied in the same functional. In this context, it guarantee the existence of at least one solution of the least energy. The above results were obtained in [2] and [1].
3

On linearly coupled systems of Schrödinger equations with critical growth

Melo Júnior, José Carlos de Albuquerque 24 February 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-25T13:08:29Z No. of bitstreams: 1 arquivototal.pdf: 1324370 bytes, checksum: 6a689c99393e6b9a2a7f27c49ef07a8d (MD5) / Made available in DSpace on 2017-08-25T13:08:29Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1324370 bytes, checksum: 6a689c99393e6b9a2a7f27c49ef07a8d (MD5) Previous issue date: 2017-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In thisworkwestudytheexistenceofgroundstatesforthefollowingclassofcoupled systems involvingnonlinearSchrödingerequations 8<: 􀀀 u + V1(x)u = f1(x; u) + (x)v;x 2 RN; 􀀀 v + V2(x)v = f2(x; v) + (x)u; x 2 RN; where thepotentials V1 : RN ! R, V2 : RN ! R are nonnegativeandrelatedwith the couplingterm : RN ! R by j (x)j < pV1(x)V2(x), forsome 0 < < 1. In the case N = 2, thenonlinearities f1 e f2 havecriticalexponentialgrowthinthesense of Trudinger-Moserinequality.Inthecase N 3, thenonlinearitiesarepolynomials with subcriticalandcriticalexponentintheSobolevsense.Westudyalsothefollowing class ofnonlocalcoupledsystems 8<: (􀀀 )1=2u + V1(x)u = f1(u) + (x)v;x 2 R; (􀀀 )1=2v + V2(x)v = f2(v) + (x)u; x 2 R; where (􀀀 )1=2 denotes thesquarerootoftheLaplacianoperatorandthenonlinearities havecriticalexponentialgrowth.Ourapproachisvariationalandbasedon minimization techniqueovertheNeharimanifold / Neste trabalhoestudamosaexistênciadegroundstatesparaaseguinteclassede sistemas acopladosenvolvendoequaçõesdeSchrödingernão-lineares 8<: 􀀀 u + V1(x)u = f1(x; u) + (x)v;x 2 RN; 􀀀 v + V2(x)v = f2(x; v) + (x)u; x 2 RN; onde ospotenciais V1 : RN ! R, V2 : RN ! R são não-negativoseestãorelacionados com otermodeacomplamento : RN ! R por j (x)j < pV1(x)V2(x), paraalgum 0 < < 1. Nocaso N = 2, asnão-linearidades f1 e f2 possuemcrescimentocrítico exponencialnosentidodadesigualdadedeTrudinger-Moser.Nocaso N 3, asnão- linearidades sãopolinômioscomexpoentesubcríticoecríticonosentidodeSobolev. Estudamos aindaaseguinteclassedesistemasacopladosnão-locais 8<: (􀀀 )1=2u + V1(x)u = f1(u) + (x)v;x 2 R; (􀀀 )1=2v + V2(x)v = f2(v) + (x)u; x 2 R; onde (􀀀 )1=2 denota ooperadorraízquadradadolaplacianoeasnão-linearidades possuemcrescimentocríticoexponencial.Nossaabordagemévariacionalebaseadana técnica deminimizaçãosobreavariedadedeNehari.

Page generated in 0.0479 seconds