Spelling suggestions: "subject:"conergy - atorage"" "subject:"conergy - 2storage""
251 |
The Application of Microencapsulated Biobased Phase Change Material on TextileHagman, Susanna January 2016 (has links)
The increasing demand for energy in combination with a greater awareness for our environmental impact have encouraged the development of sustainable energy sources, including materials for energy storage. Latent heat thermal energy storage by the use of phase change material (PCM) have become an area of great interest. It is a reliable and efficient way to reduce energy consumption. PCMs store and release latent heat, which means that the material can absorb the excess of heat energy, save it and release it when needed. By introducing soy wax as a biobased PCM and apply it on textile, one can achieve a thermoregulation material to be used in buildings and smart textiles. By replacing the present most used PCM, paraffin, with soy wax one cannot only decrease the use of fossil fuel, but also achieve a less flammable material. The performance of soy wax PCM applied on a textile fabric have not yet been investigated but can be a step towards a more sustainable energy consumption. The soy wax may also broaden the application for PCM due to its low flammability. The aim is to develop an environmental friendly latent heat thermal energy storage material to be used within numerous application fields.
|
252 |
Discrete and porous computational fluid dynamics modelling of an air-rock bed thermal energy storage systemLouw, Andre Du Randt 04 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Concentrating solar power promises to be a potential solution for meeting the
worlds energy needs in the future. One of the key features of this type of renewable
energy technology is its ability to store energy effectively and relatively
cheaply. An air-rock bed thermal energy storage system promises to be an effective
and reasonably inexpensive storage system for concentrating solar power
plants. Currently there is no such storage system commercially in operation
in any concentrating solar power plant, and further research is required before
such a system can be implemented. The main research areas to address are
the thermal-mechanical behaviour of rocks, rock bed pressure drop correlations
and effective and practical system designs. Recent studies have shown that the
pressure drop over a packed bed of rocks is dependant on various aspects such
as particle orientation relative to the flow direction, particle shape and surface
roughness. The irregularity and unpredictability of the particle shapes make it
difficult to formulate a general pressure drop correlation. Typical air-rock bed
thermal design concepts consist of a large vertical square or cylindrical vessel in
which the bed is contained. Such system designs are simple but susceptible to
the ratcheting effect and large pressure drops. Several authors have proposed
concepts to over-come these issues, but there remains a need for tools to prove
the feasibility of the designs.
The purpose of this paper is to investigate aDEM-CFD coupled approach that
can aid the development of an air-rock bed thermal energy storage system. This
study specifically focuses on the use of CFD. A complementary study focusses
on DEM. The two areas of focus in this study are the pressure drop and system
design. A discrete CFD simulation model is used to predict pressure drop over packed beds containing spherical and irregular particles. DEM is used to create
randomly packed beds containing either spherical or irregularly shaped particles.
This model is also used to determine the heat transfer between the fluid
and particle surface. A porous CFD model is used to model system design concepts.
Pressure drop and heat transfer data predicted by the discrete model, is
used in the porous model to describe the pressure drop and thermal behaviour
of a TES system.
Results from the discrete CFD model shows that it can accurately predict the
pressure drop over a packed bed of spheres with an average deviation of roughly
10%fromresults found in literature. The heat transfer between the fluid and particle
surface also is accurately predicted, with an average deviation of between
13.36 % and 21.83 % from results found in literature. The discrete CFD model for
packed beds containing irregular particles presented problems when generating
a mesh for the CFD computational domain. The clump logic method was used
to represent rock particles in this study. This method was proven by other studies
to accurately model the rock particle and the rock packed bed structure using
DEM. However, this technique presented problems when generating the surface
mesh. As a result a simplified clump model was used to represent the rock particles.
This simplified clump model showed characteristics of a packed bed of
rocks in terms of pressure drop and heat transfer. However, the results suggest
that the particles failed to represent formdrag. This was attributed to absence of
blunt surfaces and sharp edges of the simplified clumpmodel normally found on
rock particles. The irregular particles presented in this study proved to be inadequate
for modelling universal characteristics of a packed bed of rocks in terms of
pressure drop. The porous CFD model was validated against experimental measurement
to predict the thermal behaviour of rock beds. The application of the
porous model demonstrated that it is a useful design tool for system design concepts. / AFRIKAANSE OPSOMMING: Gekonsentreerde sonkrag beloof om ’n potensiële toekomstige oplossing te
wees vir die wêreld se groeiende energie behoeftes. Een van die belangrikste eienskappe
van hierdie tipe hernubare energie tegnologie is die vermoë om energie
doeltreffend en relatief goedkoop te stoor. ’n Lug-klipbed termiese energie
stoorstelsel beloof om ’n doeltreffende en redelik goedkoop stoorstelsel vir gekonsentreerde
sonkragstasies te wees . Tans is daar geen sodanige stoorstelsel
kommersieël in werking in enige gekonsentreerde sonkragstasie nie. Verdere navorsing
is nodig voordat so ’n stelsel in werking gestel kan word. Die belangrikste
navorsingsgebiede om aan te spreek is die termies-meganiese gedrag van klippe,
klipbed drukverlies korrelasies en effektiewe en praktiese stelsel ontwerpe. Onlangse
studies het getoon dat die drukverlies oor ’n gepakte bed van klippe afhanklik
is van verskeie aspekte soos partikel oriëntasie tot die vloeirigting, partikel
vormen oppervlak grofheid. Die onreëlmatigheid en onvoorspelbaarheid van
die klip vorms maak dit moeilik om ’n algemene drukverlies korrelasie te formuleer.
Tipiese lug-klipbed termiese ontwerp konsepte bestaan uit ’n groot vertikale
vierkantige of silindriese houer waarin die gepakte bed is. Sodanige sisteem
ontwerpe is eenvoudig, maar vatbaar vir die palrat effek en groot drukverliese.
Verskeie studies het voorgestelde konsepte om hierdie kwessies te oorkom, maar
daar is steeds ’n behoefte aanmetodes om die haalbaarheid van die ontwerpe te
bewys.
Die doel van hierdie studie is om ’n Diskreet Element Modelle (DEM) en numeriese
vloeidinamika gekoppelde benadering te ontwikkel wat ’n lug-klipbed termiese energie stoorstelsel kan ondersoek. Hierdie studie fokus spesifiek op
die gebruik van numeriese vloeidinamika. ’n Aanvullende studie fokus op DEM.
Die twee areas van fokus in hierdie studie is die drukverlies en stelsel ontwerp.
’n Diskrete numeriese vloeidinamika simulasie model word gebruik om drukverlies
te voorspel oor gepakte beddens met sferiese en onreëlmatige partikels.
DEM word gebruik om lukraak gepakte beddens van óf sferiese óf onreëlmatige
partikels te skep. Hierdie model is ook gebruik om die hitte-oordrag tussen die
vloeistof en partikel oppervlak te bepaal. ’n Poreuse numeriese vloeidinamika
model word gebruik omdie stelsel ontwerp konsepte voor te stel. Drukverlies en
hitte-oordrag data, voorspel deur die diskrete model, word gebruik in die poreuse
model om die drukverlies- en hittegedrag van ’n TES-stelsel te beskryf. Resultate van die diskrete numeriese vloeidinamikamodel toon dat dit akkuraat
die drukverlies oor ’n gepakte bed van sfere kan voorspel met ’n gemiddelde
afwyking van ongeveer 10%van die resultatewat in die literatuur aangetref word.
Die hitte-oordrag tussen die vloeistof en partikel oppervlak is ook akkuraat voorspel,
met ’n gemiddelde afwyking van tussen 13.36%en 21.83%van die resultate
wat in die literatuur aangetref word. Die diskrete numeriese vloeidinamika model
vir gepakte beddens met onreëlmatige partikels bied probleme wanneer ’n
maas vir die numeriese vloeidinamika, numeriese domein gegenereer word. Die
"clump"logika metode is gebruik om klip partikels te verteenwoordig in hierdie
studie. Hierdiemetode is deur ander studies bewys om akkuraat die klip partikel
en die klip gepakte bed-struktuur te modelleer deur die gebruik van DEM. Hierdie
tegniek het egter probleme gebied toe die oppervlak maas gegenereer is. As
gevolg hiervan is ’n vereenvoudigde "clump"model gebruik om die klip partikels
te verteenwoordig. Die vereenvoudigde "clump"model vertoon karakteristieke
eienskappe van ’n gepakte bed van klippe in terme van drukverlies en hitte oordrag.
Die resultate het egter getoon dat die partikels nie vorm weerstand verteenwoordig
nie. Hierdie resultate kan toegeskryf word aan die afwesigheid van
gladde oppervlaktes en skerp kante, wat normaalweg op klip partikels gevind
word, in die vereenvoudigde "clump"model. Die oneweredige partikels wat in
hierdie studie voorgestel word, blykomnie geskik tewees vir die modellering van
die universele karakteristieke eienskappe van ’n gepakte bed van klippe in terme
van drukverlies nie. Die poreuse numeriese vloeidinamika model is met eksperimentele
metings bevestig omdie termiese gedrag van klipbeddens te voorspel.
Die toepassing van die poreuse model demonstreer dat dit ’n nuttige ontwerp
metode is vir stelsel ontwerp konsepte.
|
253 |
Bidirectional converter for a stirling energy systemRedecker, H. H. (Hans Henning) 12 1900 (has links)
Thesis (MScIng)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: This thesis discusses a 23 kW three-phase AC bus system that is utilized together with the
“Stirling Energy System (SES) Integrated Solar Dish-Stirling Module” to function as a
mini-grid for off-grid locations. The system is designed to supply power to 27 rural
households. This three-phase AC bus system includes a bidirectional 4-wire PWM
converter and a battery bank for energy storage. The simulations and results presented
show that the system can function as a rectifier and as an inverter. The system operates as
an inverter when the SES starts up and when different AC loads are connected to the AC
bus. The unit functions as a rectifier when the battery bank is charged. The design was
implemented successfully in a practical system and measurements revealed that the
system functioned as a standalone unit. / AFRIKAANSE OPSOMMING: Hierdie tesis bespreek ‘n 23 kW drie-fase vier-draad WS bus stelsel wat saam met die
“Stirling Energy System (SES) Integrated Solar Dish-Stirling Module” gebruik word om
as ‘n alleenstaande stelsel in ’n plattelandse omgewing te laat funksioneer. Die sisteem is
ontwerp om vir 27 plattelandse huise drywing te lewer. Hierdie stelsel behels ‘n drie-fase
GS na WS omsetter, saam met loodsuur batterye as energiestoor. Die simulasies en
resultate wat gegee word, dui aan dat die omsetter as ‘n wisselrigter en ook as ‘n
gelykrigter kan werk. Die stelsel funksioneer as ‘n wisselrigter as die SES aanskakel, en
as ekstra laste op die WS bus gekoppel word. Die sisteem funksioneer as ‘n gelykrigter as
die batterye gelaai word. Die ontwerp is suksesvol in ‘n praktiese stelsel geimplimenteer
wat as ‘n alleenstaande stelsel funksioneer.
|
254 |
NOVEL DESIGN OF FUNCTIONALIZED CARBON NANOTUBE ELECTRODES AND MEMBRANES FOR FUEL CELLS AND ENERGY STORAGESu, Xin 01 January 2012 (has links)
A novel electrochemical method to generate nm-scale bubbles at the tips of CNTs can temporarily block the membrane. A 92% blocking efficiency is achieved when the bubbles are stabilized in 30-60 nm diameter „wells‟ at the tips of CNTs. This well is formed by the electrochemical oxidation of the conductive CNTs partially into the polymer matrix of the membrane. Meanwhile, the nanoscale bubbles can be removed with 0.004 atm pressure to recover the transport through the CNT membrane. The CNT membrane with nanoscale bubble valve system was used to demonstrate electrochemical energy storage.
Uniform ultrathin Pt films were electrodeposited onto an aligned array of carbon nanotubes (CNTs) for high-area chemically stable methanol fuel cell anodes. Electrochemical treatment of the graphitic CNT surfaces by diazonium benzoic acid allowed for uniform Pt electroplating. The mass activity of the Pt thin film can reach 400 A/g at a scan rate of 20 mV/s and in a solution of 1 M CH3OH/0.5 M H2SO4. A novel programmed pulse potential at 0 V was also seen to nearly eliminate the effects of carbon monoxide poisoning on catalyst Pt. Furthermore, the Pt monolayer was deposited on buckypaper by replacing the precursor Cu monolayer coated on CNTs by the underpotential deposition. The electrochemical surface modification of graphite CNTs by fluorinated benzoic acid was critical to coordinate Cu ions for monolayer formation. The mass activity of the monolayer can be improved to the record value of 2711 A/g. This is about 13 times higher than that of the ~10 nm thick Pt film coated on MWCNTs. Besides the high mass activity, the Pt monolayer coated on buckypaper can be used as catalyst for fuel cells with several advantages such as low cost, high surface area, flexibility, mechanical robustness and enhanced pressure flow.
Finally, a new strategy has been developed toward electrochemical water oxidation with Ir complexes catalyst, which was grafted on buckypaper by direct binding to enhance catalyst activity. The TOF (turn over frequency) of the Ir catalyst for water splitting was 7.9 s-1 at the constant potential of 1.4 V vs Ag/AgCl.
|
255 |
Conducting polymer hydrogels for high-performance electrochemical devicesLiu, Borui 09 October 2014 (has links)
Conducting polymer hydrogels (CPHs) is a class of unique materials that synergize the advantages of conducting polymers (CPs) and polymer hydrogels together. It has been employed in many high-performance electrochemical devices for years, such as energy storage and biosensors. However, large limitations of applying CPHs into the abovementioned areas have been facing the researcher for a long time, mainly due to the difficulties from complicated materials synthesis and untenable nanostructures for potential applications. The drawbacks of previously reported CPHs have put numerous disadvantages onto their applications, partially because they have, for example, high prices, untunable microscale or nanoscale architectures, environmentally hazardous properties, and unscalable and time-consuming synthesis processes. In this thesis, we proposed a novel route for carrying out CPHs by one-step organics synthesis at ambient conditions. The CPHs have hierarchically porous nanostructures crosslinked in a three-dimensional (3D) way, which enable its stable mechanical, unique chemical and physical properties, and outstanding electrochemical properties for potential applicability in long-term energy storage devices and highly sensitive biosensors. With highly controllable nanostructures of the CPHs, our novel concept and material system could possibly be utilized in a broad range of electrochemical applications, including but not limited to lithium-ion batteries (LIBs) electrodes, electrochemical capacitors (ECs), biofuel cells, medical electrodes, printable electronic devices, and biosensors. / text
|
256 |
Development of High Capacitance Films for Electrical Energy Storage Using Electrophoretic Deposition of BaTiO3 on Ultrasonically Etched NiHarari, Berkan 13 October 2012 (has links)
High capacitance devices were developed using rapid electrophoretic deposition (EPD) of barium titanate (BaTiO3) on ultrasonically etched nickel (Ni) substrates. The microstructural and
electrical properties of films with varying thicknesses, sintering temperatures and substrate etching times were investigated to study their effect on the capacitance. Although increasing the capacitance was the primary goal, decreasing manufacturing costs and reducing environmental impact was also considered. After confirming the tetragonality and particle size of a 0.2 µm hydrothermal powder, it was dispersed in an aqueous-organic mixture of ethanol, acetone and water. A zeta potential of 50 mV was observed at the EPD pH level (6.8). Flocculation or coagulation was not likely in this situation. Therefore, mixing water with an organic solution was an effective method for reducing environmental impact while maintaining deposition quality. The presence of BaCO3 in the films was proven using X-ray diffraction. Other impurities
such as TiO2 and NiO were not detected. A significant variation in the average grain size was not observed for films with different thicknesses whereas films sintered at different temperatures displayed greater variation. A bimodal pore size distribution in the samples suggested that the powder was agglomerated after deposition due to a high deposition voltage (20 V). Rapid deposition times of 2 to 8 seconds offered a potential for cost reduction compared to longer
deposition times implemented in industry. Therefore the increased porosity was accepted. The dielectric constant of the films increased from 2900 to 6730 as the thickness increased from 17.75 µm to 47.5 µm. The dissipation factor decreased from 0.27 to 0.06 with increasing thickness. This behavior was attributed to a low dielectric constant interfacial layer and a higher dielectric leakage current at smaller thicknesses. The dielectric constant increased from 1700 to 6350 and the dissipation factor decreased from 0.23 to 0.04 as the sintering temperature increased from 1150°C to 1300°C. This was attributed to an increase in tetragonality with grain size and a decrease in porosity with sintering temperature. Finally, etching a substrate for 60 seconds increased its capacitance by 27.47% and using ultrasonic agitation further increased the capacitance by 8.75%. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2012-10-12 00:54:53.915
|
257 |
A Techno-Economic Framework for the Analysis of Concentrating Solar Power Plants with StorageGuédez, Rafael January 2016 (has links)
Concentrating solar power plants can integrate cost-effective thermal energy storage systems and thereby supply controllable power on demand, an advantage against other renewable technologies. Storage integration allows a solar thermal power plant to increase its load factor and to shift production to periods of peak demand. It also enables output firmness, providing stability to the power block and to the grid. Thus, despite the additional investment, storage can enhance the performance and economic viability of the plants. However, the levelized cost of electricity of these plants yet remains higher than for other technologies, so projects today are only viable through the provision of incentives or technology-specific competitive bid tenders. It is the variability of the solar resource, the myriad roles that storage can assume, and the complexity of enhancing the synergies between the solar field, the storage and the power block, what makes the development of adequate policy instruments, design and operation of these plants a challenging process. In this thesis a comprehensive methodology for the pre-design and analysis of concentrating solar power plants is presented. The methodology is based on a techno-economic modeling approach that allows identifying optimum trade-off curves between technical, environmental, and financial performance indicators. A number of contemporary plant layouts and novel storage and hybridization concepts are assessed to identify optimum plant configurations, in terms of component size and storage dispatch strategies. Conclusions highlight the relevance between the sizing of key plant components, the operation strategy and the boundaries set by the location. The interrelation between critical performance indicators, and their use as decisive parameters, is also discussed. Results are used as a basis to provide recommendations aimed to support the decision making process of key actors along the project development value chain of the plants. This research work and conclusions are primarily meant to set a stepping stone in the research of concentrating solar power plant design and optimization, but also to support the research towards understanding the value of storage in concentrating solar power plants and in the grid. / Koncentrerad solkraft erbjuder möjligheten att integrera kostnadseffektiv termisk energilagring och därmed behovsstyrd kraftkontroll. Detta är en viktig fördel jämfört med andra förnybara energiteknologier. Lagringsintegration tillåter solkraftsanläggningar att öka sin lastfaktor och skifta produktion till tider med största efterfrågan. Vidare möjliggör lagring fast elproduktion vilket leder till förbättrad nät- och kraftturbinstabilitet. Därför kan termisk lagring öka anläggningsprestanda och ekonomiskt värde trots ökande initiala kapitalkostnader. I termer av specifik elproduktionskostnad (LCOE) ligger koncentrerade solkraftsanläggningar med lagring fortfarande högre än andra kraftteknologier och anläggningsprojekt blir endast lönsamma genom subventionsmodeller eller teknologispecifika konkurrensutsatta anbudsförfaranden. Att hitta adekvata policylösningar och optimala design och operationsstrategier är en utmanande process eftersom det gäller att hitta rätt balans mellan variabel solinstrålning, lagring av energi och tid för produktion genom optimal design och operation av solmottagarfält, kraftblock och lagringskapacitet. I denna avhandling presenteras en omfattande metodik för pre-design och analys av koncentrerande solkraftverk. Metodiken baseras på en tekno-ekonomisk modelleringsansats som möjliggör identifiering av optimala avvägningssamband för tekniska, ekonomiska och miljöprestanda indikatorer. Metodiken tillämpas på ett antal moderna anläggningslayouter och lagrings- och hybridiseringskoncept för att identifiera optimal kraftanläggningsdesign i termer av komponentprestanda och lagringsanvändningsstrategier. I slutsatsen poängteras relevansen av att hitta rätt storlek på nyckelkomponenter i relation till lagringsstrategi och randvillkoren som ges av konstruktionsläget för optimal ekonomisk och miljömässig prestanda. Resultaten används för att formulera rekommendationer till nyckelaktörer i beslutsprocessen genom hela kraftanläggningens värdekedja från politisk beslutsfattare till anläggningsingenjör. Forskningen och slutsatserna i detta arbete skall i första hand ta ett steg framåt för optimering och design av solkraftsanläggningar men även tillhandahålla en metodik för utvärdering av lagringslösningar och dess specifika värde för solkraftsanläggningar och elnätet. / <p>QC 20160829</p>
|
258 |
Energy storage solutions for electric bus fast charging stations : Cost optimization of grid connection and grid reinforcementsAndersson, Malin January 2017 (has links)
This study investigates the economic benefits of installing a lithium-ion battery storage (lithium iron phosphate, LFP and lithium titanate, LTO) at an electric bus fast charging station. It is conducted on a potential electric bus system in the Swedish city Västerås, and based on the existing bus schedules and routes as well as the local distribution system. The size of the energy storage as well as the maximum power outtake from the grid is optimized in order to minimize the total annual cost of the connection. The assessment of the distribution system shows that implementing an electric bus system based on opportunity charging in Västerås does not cause over-capacity in the 10 kV grid during normal feeding mode. However, grid reinforcements might become necessary to guarantee potential backup feeding modes. Batteries are not a cost effective option to decrease grid owner investments in new transformers. However, battery energy storage have the possibility to decrease the annual cost of connecting a fast charging station to the low-voltage grid. The main advantage of the storage system is to decrease the fees to the grid owner. Of the studied batteries, LTO is the most cost effective solution because of its larger possible depth-of-discharge for a given cycle life. The most important characteristics, that determine if a fast charging station could benefit economically from an energy storage, is the bus frequency. The longer the time in between buses and the higher the power demand, the more advantageous is the energy storage.
|
259 |
Electrified Integrated Kinetic Energy StorageHedlund, Magnus January 2017 (has links)
The electric car is a technically efficient driveline, although it is demanding in terms of the primary energy source. Most trips are below 50 km and the mean power required for maintaining speed is quite low, but the system has to be able to both provide long range and high maximum power for acceleration. By separating power and energy handling in a hybrid driveline, the primary energy source, e.g. a battery can be optimised for specific energy (decreasing costs and material usage). Kinetic energy storage in the form of flywheels can handle the short, high power bursts of acceleration and decceleration with high efficiency. This thesis focuses on the design and construction of flywheels in which an electric machine and a low-loss magnetic suspension are considered an integral part of the composite shell, in an effort to increase specific energy. A method of numerically optimising shrink-fitted composite shells was developed and implemented in software, based on a plane stress assumption, with a grid search optimiser. A composite shell was designed, analysed numerically and constructed, with an integrated permanent magnet synchronous machine. Passive axial lift bearings were optimised, analysed numerically for losses and lift force, and verified with experiments. Active radial electromagnets optimised for high stiffness per ohmic loss were built and analysed in terms of force and stiffness, both numerically and experimentally. Electronics and a high-speed measurement system were designed to drive the magnetic bearings and the electric machine. The control of these systems were implemented in an FPGA, and a notch-filter was designed to suppress eigenfrequencies to achieve levitation of the rotor. The spin-down losses of the flywheel in vacuum were found to be 1.7 W/Wh, evaluated at 1000 rpm. A novel switched reluctance machine concept was developed for hollow cylinder flywheels. This class of flywheels are shaft-less, in an effort to avoid the shaft-to-rim connection. A small-scale prototype was built and verified to correspond well to analytical and numerical models, by indirect measurement of the inductance through a system identification method.
|
260 |
Processing and properties of nanostructured solid-state energy storage devicesHuang, Chun January 2012 (has links)
A scalable spray processing technique was used to fabricate carbon nanotube (CNT)-based film electrodes and solid-state supercapacitors. The sprayed CNT-based electrodes comprised a randomly interconnected meso-porous network with a high electrical conductivity. Layer-by-layer (LbL) deposition of functionalised and oppositely charged single-wall carbon nanotubes (SWNTs) increased the electrode density and improved charging and discharging kinetics when compared with carboxylic functionalised only SWNT electrodes. The capacitance was further increased to 151 F g-1 at 2 mV s-1 and 120 F g-1 at 100 mV s-1 after vacuum and H2 heat treatments that removed the functional groups, and resulted in a hybrid microstructure of SWNTs and multi-layer graphene sheets from unzipped SWNTs. Flexible solid-state supercapacitors were fabricated by directly spraying multi-wall carbon nanotube (MWNT)-based aqueous suspensions onto both sides of a Nafion membrane and dried. A single cell with MWNT-only electrodes had a capacitance of 57 F g-1 per electrode at 2 mV s-1 and 44 F g-1 at 150 mV s-1. Cells with MWNT/ionomer electrodes showed a higher H+ mobility and a lower charge transfer resistance, and the capacitance increased to 145 F g-1 at 2 mV s-1 and 91 F g-1 at 150 mV s-1. Finally, MWNT/TiO2 nanoparticle/ionomer hybrid electrodes were used in the same solid-state supercapacitor configuration and provided a capacitance of 484 F g-1 per electrode at 5 mV s-1 and 322 F g-1 at 100 mV s-1. A qualitative model of the charge storage mechanism was developed, where TiO2 promoted H+ ions via redox reactions that fed protons into the proton-conducting ionomer coating over the MWNTs (in which the TiO2 was embedded), while electrons were readily conducted through the MWNT scaffold. This solid-state supercapacitor provided both attractive energy (31.8 Wh kg-1) and power (14.9 kW kg-1) densities, where such high energy density is difficult to achieve for MWNTs alone and such high power density is difficult for metal oxides alone, especially in the solid state.
|
Page generated in 0.3531 seconds