• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 546
  • 70
  • 62
  • 46
  • 43
  • 23
  • 21
  • 16
  • 8
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 1069
  • 1069
  • 321
  • 256
  • 215
  • 208
  • 195
  • 171
  • 124
  • 111
  • 109
  • 104
  • 103
  • 103
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Electrochemical studies of carbon-based materials

Wisetsuwannaphum, Sirikarn January 2014 (has links)
Graphene, as a recently discovered carbon allotrope, possesses with it many outstanding properties ranging from high electrical conductivity to great mechanical strength. Single layer graphene can be prepared by mechanical cleavage of graphite or by a more sophisticated method, CVD. However, the scale-up process for these preparation techniques is still unconvincing. Solution-processed graphene from exfoliation of graphite oxide on the other hand provides an alternative prospect resulting in the formation of graphene nanoplatelets (GNPs), which can be readily manipulated to tailor-suit various application demands. The main aim of the thesis is to explore the possibility and availability of this versatile method to produce graphene nanoplatelet and its composites with good all-round performance in energy and bioanalytical applications. A range of physical and chemical characterisation techniques were utilised including SEM, TEM, AFM, XPS, XRD, DLS, FTIR, Raman and UV-Vis spectroscopy in order to investigate the structural and chemical information of the graphene-based materials prepared. Functionalisation of graphene oxide with polyelectrolyte polymer could facilitate deposition of platinum nanoparticles in the formation of Pt-GNPs composites. The resultant composite was employed for bioanalytical application in the detection of an important neurotransmitter, glutamate, based on glutamate oxidase enzyme. The performance of Pt-GNPs based glutamate sensor exhibited enhanced sensitivity and prolonged stability compared to the sensors based on Pt decorated diamond or glassy carbon electrodes. The significant interfering effect from concomitant electrochemically active biological compounds associated with Pt-GNPs electrode however could be alleviated via opting for Prussian blue deposited GNPs electrode instead. The oppositely charged Pt-GNPs due to different functionalising polymers were also subject to self-assembly, which was enabled by the electrostatic interaction of the opposite charges of Pt-GNPs. The self-assembled film showed enhanced mechanical stability than the conventional drop-casted film and provided reasonably good activity towards oxidation of hydrogen peroxide. Three-component composite of graphene, nanodiamond and polyaniline was prepared via in-situ polymerisation for usage as an electrode material in electrochemical capacitors ("supercapacitors"). The addition of graphene was shown to significantly enhance specific capacitance while nanodiamond could improve the stability of the electrode by strengthening the polymer core. Another approach to produce a supercapacitor was via electrodeposition of nickel and cobalt hydroxides on graphene oxide film corporated with bicarbonate salt. The film was then subject to thermal reduction of GO and expansion of graphene layers within the film was observed. This leavening process enhanced the surface area of graphene film and thus the higher specific capacitance was obtained. The decoration of nickel and cobalt hydroxides onto the film also boosted the specific capacitance further however the poor cycling stability of the heated film still remained an issue. Graphene nanoplatelets were also used as a support for electrodeposition of Pt nanoparticles for methanol oxidation in acidic media. The preferential phase of the Pt deposited and large surface area of graphene in comparison to other carbon supports studied led to good catalytic activity being observed.
262

Improved Self-Consumption of Photovoltaic Electricity in Buildings : Storage, Curtailment and Grid Simulations

Luthander, Rasmus January 2016 (has links)
The global market for photovoltaics (PV) has increased rapidly: during 2014, 44 times more was installed than in 2004, partly due to a price reduction of 60-70% during the same time period. Economic support schemes that were needed to make PV competitive on the electricity market have gradually decreased and self-consumption of PV electricity is becoming more interesting internationally from an economic perspective. This licentiate thesis investigates self-consumption of residential PV electricity and how more PV power can be allowed in and injected into a distribution grid. A model was developed for PV panels in various orientations and showed a better relative load matching with east-west-oriented compared to south-oriented PV panels. However, the yearly electricity production for the east-west-system decreased, which resulted in less self-consumed electricity. Alternatives for self-consumption of PV electricity and reduced feed-in power in a community of detached houses were investigated. The self-consumption increased more with shared batteries than with individual batteries with identical total storage capacity. A 50% reduction in feed-in power leads to losses below 10% due to PV power curtailment. Methodologies for overvoltage prevention in a distribution grid with a high share of PV power production were developed. Simulations with a case with 42% of the yearly electricity demand from PV showed promising results for preventing overvoltage using centralized battery storage and PV power curtailment. These results show potential for increasing the self-consumption of residential PV electricity with storage and to reduce stress on a distribution grid with storage and power curtailment. Increased self-consumption with storage is however not profitable in Sweden today, and 42% of the electricity from PV is far more than the actual contribution of 0.06% to the total electricity production in Sweden in 2014.
263

RuO2 Nanorods as an Electrocatalyst for Proton Exchange Membrane Water Electrolysis

Smith, Richard 01 January 2015 (has links)
The desire for pure diatomic hydrogen gas, H2(g), has been on the rise since the concept of the hydrogen economy system was proposed back in 1970. The production of hydrogen has been extensively examined over 40 + years as the need to replace current fuel sources, hydrocarbons, has become more prevalent. Currently there are only two practical and renewable production methods of hydrogen; landfill gas and power to gas. This study focuses on the later method; using various renewable energy sources, such as photovoltaics, to provide off-peak energy to perform water electrolysis. Efficient electrolysis takes place in electrochemical cells which maximize performance efficiency with the use of noble metal electrocatalyst. Optimizing these electrocatalyst to be less material dependent, highly durable, and more efficient will support the implementation of power to gas electrolysis into the energy infrastructure. The main focus of this study is to explore RuO2 nanorods as a possible electrocatalyst for Proton Exchange Membrane (PEM) water electrolysis. A PEM electrolyzer cell has been constructed and fitted with a RuO2 nanorod decorated, mixed metal oxide (MMO) ribbon mesh anode catalyst structure. The current density-voltage characteristics were measured for the RuO2 nanorod electrocatalyst while under water feed operation. The electrocatalytic behavior was compared to that of ribbon mesh anode catalyst structures not decorated with RuO2 nanorods; one coated with a Ir/Ta MMO catalyst, the other was stripped of the MMO coating resulting in a Ti ribbon mesh anode. The results of these experiments show increased activity with the RuO2 nanorod electrocatalyst corresponding to a decrease in electrochemical overpotential. Through the collection of experimental data from various electrolyzer cell configurations, these overpotenials were able to be identified, resulting in categorical attributions of the enhanced catalytic behavior examined.
264

Maximising renewable hosting capacity in electricity networks

Sun, Wei January 2015 (has links)
The electricity network is undergoing significant changes in the transition to a low carbon system. The growth of renewable distributed generation (DG) creates a number of technical and economic challenges in the electricity network. While the development of the smart grid promises alternative ways to manage network constraints, their impact on the ability of the network to accommodate DG – the ‘hosting capacity’- is not fully understood. It is of significance for both DNOs and DGs developers to quantify the hosting capacity according to given technical or commercial objectives while subject to a set of predefined limits. The combinational nature of the hosting capacity problem, together with the intermittent nature of renewable generation and the complex actions of smart control systems, means evaluation of hosting capacity requires appropriate optimisation techniques. This thesis extends the knowledge of hosting capacity. Three specific but related areas are examined to fill the gaps identified in existing knowledge. New evaluation methods are developed that allow the study of hosting capacity (1) under different curtailment priority rules, (2) with harmonic distortion limits, and (3) alongside energy storage systems. These works together improve DG planning in two directions: demonstrating the benefit provided by a range of smart grid solutions; and evaluating extensive impacts to ensure compliance with all relevant planning standards and grid codes. As an outcome, the methods developed can help both DNOs and DG developers make sound and practical decisions, facilitating the integration of renewable DG in a more cost-effective way.
265

Development of a cascaded latent heat storage system for parabolic trough solar thermal power generation

Muhammad, Mubarak Danladi January 2014 (has links)
Concentrated solar power (CSP) has the potential of fulfilling the world’s electricity needs. Parabolic-trough system using synthetic oil as the HTF with operating temperature between 300 and 400o C, is the most matured CSP technology. A thermal storage system is required for the stable and cost effective operation of CSP plants. The current storage technology is the indirect two-tank system which is expensive and has high energy consumption due to the need to prevent the storage material from freezing. Latent heat storage (LHS) systems offer higher storage density translating into smaller storage size and higher performance but suitable phase change materials (PCMs) have low thermal conductivity, thus hindering the realization of their potential. The low thermal conductivity can be solved by heat transfer enhancement in the PCM. There is also lack of suitable commercially-available PCMs to cover the operating temperature range. In this study, a hybrid cascaded storage system (HCSS) consisting of a cascaded finned LHS and a high temperature sensible or concrete tube register (CTR) stages was proposed and analysed via modelling and simulation. Fluent CFD code and the Dymola simulation environment were employed. A validated CFD phase change model was used in determining the heat transfer characteristics during charging and discharging of a finned and unfinned LHS shell-and-tube storage element. The effects of various fin configurations were investigated and heat transfer coefficients that can be used for predicting the performance of the system were obtained. A model of the HCSS was then developed in the Dymola simulation environment. Simulations were conducted considering the required boundary conditions of the system to develop the best design of a system having a capacity of 875 MWhth, equivalent to 6 hours of full load operation of a 50 MWe power plant. The cascaded finned LHS section provided ~46% of the entire HCSS capacity. The HCSS and cascaded finned LHS section have volumetric specific capacities 9.3% and 54% greater than that of the two-tank system, respectively. It has been estimated that the capital cost of the system is ~12% greater than that of the two-tank system. Considering that the passive HCSS has lower operational and maintenance costs it will be more cost effective than the twotank system considering the life cycle of the system. There is no requirement of keeping the storage material above its melting temperature always. The HCSS has also the potential of even lower capital cost at higher capacities (>6 hours of full load operation).
266

Development of a Lunar Regolith Thermal Energy Storage Model for a Lunar Outpost

Valle Lozano, Aaron January 2016 (has links)
The Moon has always been an important milestone in space exploration. After the Apollo landings, it is logical to think that the next step should be a permanent habitation module, which would serve as a testing ground for more ambitious projects to Mars and beyond. For a lunar base to come into realization, it is necessary to assess a number of technological challenges which are due to the harsh conditions that can be found on the Earth's satellite. One of these tasks revolves around energy storage: During the day it is possible to use photovoltaic cells and convert the solar irradiance into electrical energy to power an outpost, however during the lunar night this source is not available. Current investigations establish that the optimal landing site for a permanent mission would be on the rim of the Shackleton crater, near the South Pole. This would reduce the night duration from 14 days to 52 hours of the lunar cycle, which is 29.5 days. While this significantly decreases the exposure to the cold temperatures of the Moon when there is no sunlight, there is still a need for a system to provide energy to the lunar base over this period. Therefore, this study pretends to serve as a possible solution for the aforementioned problem, by developing a system storing energy as thermal energy and then harvesting it as electricity using thermoelectrics. First, a theoretical introduction is presented, where the problem statement is exposed, along with background information regarding the solar illumination and the lunar soil. At the same time, an insight on regolith sintering techniques is given. These techniques are important as a means to providing thermal energy storage during the night cycle. After this, the core of the study is developed: The ideal system for energy storage is broken down into segments, and each of them is explained attending to the possible requirements of a lunar base, while providing supporting simulations when deemed appropriate. These are the solar concentrator, thermal mass, thermoelectric array, cold sink and, if necessary, a pipe network. Following this chapter, a device is proposed. Based on the previously mentioned guidelines, an ideal thermal energy system is simulated and evaluated. Although it is not optimized for efficient energy harvesting, it serves as insight on the design and simulation constraints that appear when one wants to collect electrical energy from thermoelectrics with relatively low efficiency. It was estimated that the prototype would output a mean power of 3.6 Watts over the whole duration of the lunar night. Although in its current state this technology would not present significant benefits over existing energy storage methods such as nickel-hydrogen batteries, this study also proposed several optimization methods which could vastly increase the performance of the device. These include adding more efficient thermoelectric patterns, or modifying the properties of the semiconductors by doping or using nanostructures, and present follow-on opportunities for further research.
267

Energilagring i byggnader : En litteraturstudie om batterilagring, vätgaslagring och en utredning om möjligheter till energilagring av förnyelsebar energi

Nilsson, André January 2017 (has links)
Energikonsumtionen ökar globalt och på grund av detta så behövs ökad energiproduktion. El från förnyelsebara källor är och kommer vara en nyckel för att klara av dessa energibehov och den kanske viktigaste energikällan är den primära solinstrålningen. Umeå energi gör en satsning på en solcellsanläggning vid Gammlia idrottsanläggning i Umeå och på grund av detta har en undersökning gjorts om energilagring i kombination med solcellerna. Solinstrålningen varierar över dygnet och året och därmed också elproduktionen. Solcellerna producerar endast el när solen skiner och ett sätt att ta del av den elen de perioder som inte solen lyser så kan vara energilagring. I rapportens första del har Två energilagringsmetoder undersökts, batterilagring och vätgaslagring. Metodernas funktionsprincip, för/nackdelar och en redogörelse huruvida de passar som energilagring i byggnader har gjorts. I den andra delen har beräkningar gjorts för möjligheterna att göra Gammlia idrottsanläggning självförsörjande på den producerade elen från solpanelerna. Rapportens första del har gjorts av en litteraturstudie av vetenskapliga rapporter och annat webbaserat material. Energiberäkningarna grundar sig från tillhandahållen information från Umeå energi samt tillgängliga beräkningsmetoder på internet. Batterier är en elektrokemisk lagringsform och fungerar så att en anod, en katod samt att elektrolyt används i samtliga tekniker. Fördelen med batterier är flexibiliteten och låga underhållskostnader medan den stora nackdelen är den låga energidensiteten. Vätgaslagring med hjälp av elektrolys är en metod där vätgas produceras av vatten och elektricitet. Fördelen är hög energidensitet och miljövänlig omvandling. Den största nackdelen är höga omvandlingsförluster. I undersökningen om möjligheter för energilagring i Gammlia idrottsanläggning undersöktes det om anläggningen kan göras självförsörjande på el på solcellerna. Det har konstaterats att det ej var genomförbart med den solcellsproduktion och de lagringstekniker som är aktuell i denna studie. En mindre omfattande lösning hittades som innebär dygnslagring under sommarmånaderna. Med hjälp av batterier kan energi producerad på dagen sparas och användas på kvällen/natten. Denna lösning är genomförbar rent tekniskt men inte ekonomiskt då förtjänsten är för liten i jämförelse med investeringskostnaden. / Energy consumption is increasing globally and because of this, increased energy production is necessary. Electricity from renewable sources is and will further be a key to meet the energy needs and perhaps the most important energy source is the sun. Umeå energi makes an investment in a photovoltaic system at Gammlia sports center in Umeå, and because of this, a study has been made on energy storage in combination with solar cells. Solar cells have a varied production, seen over the day and year. The solar cells only produce electricity when the sun is up, and energy storage is a possible solution for storing some of the energy produced during the day, to use later during the evening/night. The report's first section has two energy storage methods studied, battery storage and hydrogen storage. Methods for the operating principles, pros/cons and a statement whether they fit as energy storage in buildings has been made. In the second part, calculations have been made for the possibility of installing energy storage in Gammlia sports center for the electricity generated from the solar panels. The first part is made of a literature review of scientific reports and other web-based material. Energy estimates are based from the information provided from Umeå energy and the available methods of calculations on the web. Battery is an electrochemical storage shape and function to an anode, a cathode, and the electrolyte is used in all techniques. The advantage of batteries is the flexibility and low maintenance costs while the major drawback is the low energy density. Hydrogen storage using electrolysis is a method in which hydrogen produced from water and electricity. The advantage is the high energy density and environmentally friendly conversion. The main disadvantage is the high conversion losses. The survey on the possibilities for energy storage in the Gammlia sports facility, an investigation was made whether the plant could be made self-sufficient for electricity on the solar cells. It was costly that it was not feasible with the solar cell demodulation and storage technologies that are relevant in this study. A less comprehensive solution was found that involves daystorage in the summer months. Using batteries, energy produced on the day could be saved and used in the evening / night. This solution was feasible, purely technical, but not economical, as earnings were too small in comparison to investment cost.
268

Feasibility of converting a Science Park in a cold climate into an “off-grid” facility using renewable energies and seasonal storage systems

Estaña Garcia, Guillermo, Ruiz Julian, Iñigo January 2019 (has links)
The collateral effects of fossil fuels push humanity to seek solutions to these adversities. Energy efficiency and renewable energies have gone from being almost imaginary concepts to necessary. Several studies have shown that self-sufficiency through photovoltaic systems and wind energy is possible. In addition, it is necessary a storage of the surpluses of both since it increases notably the efficiency of these systems and supposes to the short/medium term a saving of money in the consumer. Due to the mentioned before, the aim of the thesis is to convert a science park located in a cold climate such as Sweden into a complex that does not depend energetically on external sources. For this purpose, a series of data from the park were first collected and then simulated and optimised using the HOMER software for different energy configurations. At the same time, a computer code was created in MatLab to enable the energy produced to be used responsibly. The proposed system consists of PV panels, wind turbines and a battery. Thanks to it, a 64 % renewable fraction is achieved, which means a reduction of 27.45 tons of CO2 per year. In addition, through the energy management system created, the electricity contract is reduced, reducing the purchase of electricity during peak hours. It is concluded that the implementation of both proposed systems contributes significantly to the achievement of the sustainable goals set for 2 030 by the main world leaders, even though a total disconnection with the electrical grid has not been achieved.
269

Analysis of the dynamic power requirements for controllable energy storage on photovoltaic microgrid

Horonga, Nyasha January 2016 (has links)
A dissertation submitted to the Facaulty of Engineering and the Built Environment, University of the Witwatersrand in ful lment of the requirements of the degree of Master of science in Engineering September 2016 / Standalone microgrid studies are being done because an expansion of the existing utility grids to supply power to remote communities is not feasible. Standalone microgrids can be considered as one of the solutions for remote communities because power can be generated close to these communities and it minimizes cost related to power transmission. Renewable energy sources with large uctuations are frequently the source of power for these standalone microgrids. The uctuating nature of these renewable sources can often lead to frequent blackouts. This research is aimed at minimizing power uctuations using controllable energy storage systems. This MSc focuses on the analysis of the ramp rate and delay time requirements for controllable energy storage system used in standalone PV microgrids. Measured insolation data and recorded load demand data for typical domestic appliances are used in this study to analyze ramp rates present. The ramp rates are then used to determine the range of energy storage ramp rate and delay time required to maintain the microgrid voltage within the standardized range of 1pu 5%. From the recorded data it has been observed that PV power can be sampled from at least 1-second intervals without losing important information. The 1 second averaged ramp rates obtained from the insolation data measurements have been found to have the highest value of 0.12pu/sec. However, this ramp rate increases to 0.3pu/sec when the allowable microgrid voltage band is narrow (1pu 5%). These insolation ramp rates are very low compared to the ramp rates of typical loads that can be connected to a microgrid. This means that, if the energy storage system is speci ed to meet the load ramp rate requirements, it will be able to respond to the uctuating PV power. The results obtained from the simulations con rm that energy storage system ramp rate plays an important role in the stability of a standalone microgrid. The minimum allowable energy storage ramp rate was found to be 8.15pu/sec for load transients with a ramp time of 20ms. This value is 28 times the energy storage ramp rate required to cancel out insolation uctuations. This further con rms that energy storage system ramp rates must be speci ed using the load demand data. The maximum allowable delay time was also found to be 0.53s to maintain the microgrid voltage within the standardized range of 1pu 5%. This delay time is applicable when canceling out only the insolation uctuations. To cancel out load transient power uctuations, there should be no delay time. / MT2017
270

The potential benefits to balance power shortage in future mobility houses with hydrogen energy storages

Eklund, Melissa January 2019 (has links)
This master thesis investigated how a hydrogen energy storage could be used anddimensioned to reduce the problem of power shortage in the local distributiongrid in Uppsala, Sweden. By implementing such a storage system in mobilityhouses, which are parking garages with integrated charging stations for electric vehicles and smart renewable energy solutions for power generation, the problem with power shortage could be decreased. The results showed that by integrating a hydrogen storage together with battery packs, it was possible to reduce power peaks in mobility houses. Further, it was clear that more power peaks facilitated the dimensioning of these type of systems. It was also shown that due to today's initial cost of hydrogen storages, the total savings related to a limited purchase of electricity from the grid were insignificant. It was therefore found that this type of hydrogen storage would not reduce costs in the short term for the mobility houses considered in this study. However, implementing a smaller kW storage could generate and improve knowledge in the hydrogen/hybrid field, which could facilitate the implementation of larger systems in the future. Furthermore, the results showed that it could be interesting to implement hydrogen storages on a bigger scale for municipalities or actors, who would want to reduce the power shortage in the local distribution grid.

Page generated in 0.0487 seconds